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Lecture 20

In which we prove properties of expander graphs.

1 Quasirandomness of Expander Graphs

Recall that if G is a d-regular graph, and A is its adjacency matrix, then, if we call
λ1 ≥ λ2 ≥ . . . ≥ λn the eigenvalues of A with repetitions, we are interested in the
parameter σ2(G) := maxi=2,...,n{|λi|}, and we have

σ2(G) =

∥∥∥∥A− d

n
J

∥∥∥∥
where J is the matrix with a one in each entry, and || · || is the matrix norm ||M || :=
maxx,||x||=1 ||Mx||.
Our fist result today is to show that, when σ2(G) is small, the graph G has the
following quasirandomness property: for every two disjoint sets S, T , the number of
edges between S and T is close to what we would expect in a random graph of average
degree d, that is, approximately d

|V | |S||T |.

For two (possibly overlapping) sets of vertices S, T , we define edgesG(S, T ) to be the
number of edges with one endpoint in S and one endpoint in T , with edges having
both endpoints in S ∩ T , if any, counted twice.

Lemma 1 (Expander Mixing Lemma) Let G = (V,E) be a d-regular graph, and
let S and T be two disjoint subsets of vertices. Then∣∣∣∣edgesG(S, T )− d

|V |
· |S| · |T |

∣∣∣∣ ≤ σ2(G) ·
√
|S| · |T |

Proof: We have

edgesG(S, T ) = 1>SA1T
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and
|S||T | = 1>SJ1T

so ∣∣∣∣edgesG(S, T )− d

|V |
· |S| · |T |

∣∣∣∣
= ·
∣∣∣∣1>SA1T −

d

|V |
1>SJ1T

∣∣∣∣
= ·
∣∣∣∣1>S (A− d

|V |
J

)
1T

∣∣∣∣
≤ ||1S|| ·

∥∥∥∥A− d

|V |
J

∥∥∥∥ · ‖1T‖
=
√
|S| · σ2(G) ·

√
|T |

�

Note that, for every disjoint S, T , we have
√
|S| · |T | ≤ |V |/2, and so the right-hand

side in the expander mixing lemma is at most σ2(G)
d
· |E|, which is a small fraction of

the total number of edges if σ2 is small compared to d.

2 Random Walks in Expanders

A t-step random walk is the probabilistic process in which we start at a vertex, then
we pick uniformly at random one of the edges incident on the vertices and we move
to the other endpoint of the edge, and then repeat this process t times.

If P := 1
d
A is the normalized adjacency matrix of an undirected regular graph G,

then P (u, v) is the probability that, in one step, a random walk started at u reaches
v. This is why the normalized adjacency matrix of a regular graph is also called its
transition matrix.

Suppose that we start a random walk at a vertex chosen according to a probability
distribution p, which we think of as a vector p ∈ RV such that p(u) ≥ 0 for every
u and

∑
u p(u) = 1. After taking one step, the probability of being at vertex v

is
∑

u p(u)P (u, v), which means that the probability distribution after one step is
described by the vector p> · P , and because of the symmetric of P , this is the same
as Pp.

Iterating the above reasoning, we see that, after a t-step random walk whose initial
vertex is chosen according to distribution p, the last vertex reached by the walk is
distributed according to P tp.
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The parameter σ2 of P t is equal to (σ2(G)/d)t, and so if G has a parameter σ2 bounded
away from d, and if t is large enough, we have that the parameter σ2 of P t is very
small, and so M t is close to 1

n
J in matrix norm. If P t was actually equal to 1

n
J , then

P t ·p would be equal to the uniform distribution, for every distribution p. We would
thus expect P t · p to be close to the uniform distribution for large enough t.

Before formalizing the above intuition, we need to fix a good measure of distance for
distributions. If we think of distributions as vectors, then a possible notion of dis-
tance between two distributions is the Euclidean distance between the corresponding
vectors. This definition, however, has various shortcoming and, in particular, can
assign small distance to distributions that are intuitively very different. For example,
suppose that p and q are distributions that are uniform over a set S, and over the
complement of S, respectively, where S is a set of size |V |/2. Then all the entries
of p− q are ±2/n and so ||p− q|| = 2/

√
n, which is vanishingly small even though

distributions over disjoint supports should be considered as maximally different dis-
tributions.

A very good measure is the total variation distance, defined as

max
S⊆V

∣∣∣∣∣∑
v∈S

p(v)−
∑
v∈S

q(v)

∣∣∣∣∣
that is, as the maximum over all events of the difference between the probability
of the event happening with respect to one distribution and the probability of it
happening with respect to the other distribution. This measure is usually called
statistical distance in computer science. It is easy to check that the total variation
distance between p and q is precisely 1

2
· ||p−q||1. Distributions with disjoint support

have total variation distance 1, which is largest possible.

Lemma 2 (Mixing Time of Random Walks in Expanders) Let G be a regular
graph, and P be its normalized adjacency matrix. Then for every distribution p over
the vertices and every t, we have

||u− P tp||1 ≤
√
|V | · (σ2(G)/d)t

where u is the uniform distribution.

In particular, if t > dc
d−σ2(G)

· ln |V |
ε
, then ||u − P tp||1 ≤ ε, where c is an absolute

constant.

Proof: Let J̄ = J/|V | be the normalized adjacency matrix of a clique with self-loops.
Then, for every distribution p, we have J̄p = u. Recall also that σ2(G) = ||P − J̄ ||.
We have
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||u−M tp||1

≤
√
|V | · ||u− P tp||

≤
√
|V | · ||J̄p− P tp||

≤
√
|V | · ||J̄ − P t|| · ||p||

≤
√
|V | · (σ2(G)/d)t

�

The last result that we discussed today is one more instantiation of the general phe-
nomenon that “if σ2(G) is small then a result that is true for the clique is true, within
some approximation, for G.”

Suppose that we take a (t − 1)-step random walk in a regular graph G starting
from a uniformly distributed initial vertex. If G is a clique with self-loops, then the
sequence of t vertices encountered in the random walk is a sequence of t independent,
uniformly distributed, vertices. In particular, if f : V → [0.1] is a bounded function,
the Chernoff-Hoeffding bounds tell us that the empirical average of f() over the t
points of the random walk is very close to the true average of f(), except with very
small probability, that is, if we denote by v1, . . . , vt the set of vertices encountered in
the random walk, we have

P

[
1

t

∑
i

f(vi) ≥ E f + ε

]
≤ e−2ε2t

where n := |V |. A corresponding Chernoff-Hoeffding bound can be proved for the
case in which the random walk is taken over a regular graph such that σ2(G) is small.

Lemma 3 (Chernoff-Hoeffding Bound for Random Walks in Expanders) Let
G = (V,E) be a regular graph, and (v1, . . . , vt) the distribution of t-tuples constructed
by sampling v1 independently, and then performing a (t−1)-step random walk starting
at v1. Let f : V → [0, 1] be any bounded function. Then

P

[
1

t

∑
i

f(vi) ≥ E f + ε+
σ2(G)

d

]
≤ e−Ω(ε2t)

We will not prove the above result, but we briefly discuss one of its many applications.

Suppose that we have a polynomial-time probabilistic algorithm A that, on inputs of
length n, uses r(n) random bits and then outputs the correct answer with probability,
say, at least 2/3. One standard way to reduce the error probability is to run the
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algorithm t times, using independent randomness each time, and then take the answer
that comes out a majority of the times. (This is for problems in which we want to
compute a function exactly; in combinatorial optimization we would run the algorithm
t times and take the best solutions, and in an application in which the algorithm
performs an approximate function evaluation we would run the algorithm t times
and take the median. The reasoning that follows for the case of exact function
computation can be applied to the other settings as well.)

On average, the number of iterations of the algorithms that give a correct answer
is ≥ 2t/3, and the cases in which the majority is erroneous correspond to cases in
which the number of iterations giving a correct answer is ≤ t/2. This means that
the case in which the modified algorithm makes a mistake correspond to the case in
which the empirical average of t independent 0/1 random variables deviates from its
expectation by more than 2/3 − 1/2 = 1/6, which can happen with probability at
most e−t/18, which becomes vanishingly small for large t.

This approach uses t · r(n) random bits. Suppose, instead, that we consider the
following algorithm: pick t random strings for the algorithm by performing a t-step
random walk in an expander graph of degree O(1) with 2r(n) vertices and such that
σ2(G) ≤ d/12, and then take the majority answer. A calculation using the Chernoff
bound for expander graphs show that the error probability is e−Ω(t), and it is achieved
using only r(n) +O(t) random bits instead of t · r(n).
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