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Lecture 17

In which we analyze the zig-zag graph product.

In the previous lecture, we claimed it is possible to “combine” a d-regular graph on
D vertices and a D-regular graph on N vertices to obtain a d2-regular graph on ND
vertices which is a good expander if the two starting graphs are. Let the two starting
graphs be denoted by H and G respectively. Then, the resulting graph, called the
zig-zag product of the two graphs is denoted by G z©H.

We will use λ(G) to denote the eigenvalue with the second-largest absolute value of
the normalized adjacency matrix 1

d
AG of a d-regular graph G. If 0 = λ1 ≤ λ2 ≤

· · · ≤ λn ≤ 2 are the eigenvalues of the normalized Laplacian of G, then λ(G) =
max{1− λ2, λn − 1}.
We claimed that if λ(H) ≤ b and λ(G) ≤ a, then λ(G z©H) ≤ a + 2b + b2. In this
lecture we shall recall the construction for the zig-zag product and prove this claim.

1 Replacement Product and Zig-Zag Product

We first describe a simpler product for a “small” d-regular graph on D vertices (de-
noted by H) and a “large” D-regular graph on N vertices (denoted by G). Assume
that for each vertex of G, there is some ordering on its D neighbors. Then we con-
struct the replacement product (see figure) G r©H as follows:

• Replace each vertex of G with a copy of H (henceforth called a cloud). For
v ∈ V (G), i ∈ V (H), let (v, i) denote the ith vertex in the vth cloud.

• Let (u, v) ∈ E(G) be such that v is the i-th neighbor of u and u is the j-th
neighbor of v. Then ((u, i), (v, j)) ∈ E(G r©H). Also, if (i, j) ∈ E(H), then
∀u ∈ V (G) ((u, i), (u, j)) ∈ E(G r©H).

Note that the replacement product constructed as above has ND vertices and is
(d+ 1)-regular.
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2 Zig-zag product of two graphs

Given two graphs G and H as above, the zig-zag product G z©H is constructed as
follows (see figure):

• The vertex set V (G z©H) is the same as in the case of the replacement product.

• ((u, i), (v, j)) ∈ E(G z©H) if there exist ` and k such that ((u, i)(u, `), ((u, `), (v, k))
and ((v, k), (v, j)) are in E(G r©H) i.e. (v, j) can be reached from (u, i) by tak-
ing a step in the first cloud, then a step between the clouds and then a step in
the second cloud (hence the name!).
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It is easy to see that the zig-zag product is a d2-regular graph on ND vertices.

Let M ∈ R([N ]×[D])×([N ]×[D]) be the normalized adjacency matrix of G z©H. Using the
fact that each edge in G r©H is made up of three steps in G r©H, we can write M as
BAB, where

B[(u, i), (v, j)] =

{
0 if u 6= v
1
d

if u = v and {i, j} ∈ H

And A[(u, i), (v, j)] = 1 if u is the j-th neighbor of v and v is the i-th neighbor of u,
and A[(u, i), (v, j)] = 0 otherwise.

Note that A is the adjacency matrix for a matching and is hence a permutation
matrix.

3 A Technical Preliminary

We will use the following fact. Suppose that M = 1
d
AG is the normalized adjacency

matrix of a graph G. Thus the largest eigenvalue of M is 1, with eigenvector 1; we
have

λ(G) = max
x⊥1

|xTMx|
||x||2

= max
x⊥1

||Mx||
||x||

(1)
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which is a corollary of the following more general result. Recall that a vector space
S ⊆ Rn is an invariant subspace for a matrix M ∈ Rn×n if Mx ∈ S for every x ∈ S.

Lemma 1 Let M be a symmetric matrix, and S be a k-dimensional invariant sub-
space for M . Thus, (from the proof of the spectral theorem) we have that S has an
orthonormal basis of eigenvectors; let λ1 ≤ · · · ≤ λk be the corresponding eigenvalues
with multiplicities; we have

max
i=1,...k

|λi| = max
x∈S

|xTMx|
||x||2

= max
x∈S

||Mx||
||x||

Proof: If the largest eigenvalue in absolute value is λk, then

max
i=1,...k

|λi| = λk = max
x∈S

xTMx

||x||2

and if it is −λ1 (because λ1 is negative, and −λ1 > λn)

max
i=1,...k

|λi| = −λ1 = −min
x∈S

xTMx

||x||2
= max

x∈S
−xTMx

||x||2

so we have

max
i=1,...k

|λi| ≤ max
x∈S

|xTMx|
||x||2

(2)

From Cauchy-Schwarz, we have

|xTMx| ≤ ||x|| · ||Mx||

and so

max
x∈S

|xTMx|
||x||2

≤ max
x∈S

||Mx||
||x||

(3)

Finally, if x1, . . . ,xk is the basis of orthonormal eigenvectors in S such that Mxi = λi,
then, for every x ∈ S, we can write x =

∑
i aixi and

||Mx|| = ||
∑
i

λiaixi|| =
√∑

i

λ2i a
2
i ≤ max

i=1,...,k
|λi| ·

√∑
i

a2i = max
i=1,...,k

|λi| · ||x||

so

max
x∈S

||Mx|
||x||

≤ max
i=1,...,k

|λi| (4)

and the Lemma follows by combining (2), (3) and (4). �
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4 Analysis of the zig-zag Product

Theorem 2 Let G be a D-regular graph with n nodes, H be a d-regular graph with
D nodes, and let a := λ(G), b := λ(H), and let the normalized adjacency matrix of
G z©H be M = BAB where A and B are as defined in Section 1.

Then λ(G z©H) ≤ a+ b+ b2

Proof: Let xRn×D be such that x ⊥ 1. We refer to a set of coordinates of x
corresponding to a copy of H as a “block” of coordinate.

We write x = x|| + x⊥, where x|| is constant within each block, and x⊥ sums to
zero within each block. Note both x|| and x⊥ are orthogonal to 1, and that they are
orthogonal to each other.

We want to prove
|xTMx|
||x||2

≤ a+ b+ b2 (5)

We have (using the fact that M is symmetric)

|xTMx| =≤ |xT
||Mx|||+ 2|xT

||Mx⊥|+ |xT
⊥Mx⊥|

And it remains to bound the three terms.

1. |xT
||Mx||| ≤ a||x||||2

Because, after writing M = BAB, we see that Bx|| = x||, because B is the
same as In ⊗

(
1
d
AH

)
, the tensor product of the identity and of the normalized

adjacency matrix of H. The normalized adjacency matrix of H leaves a vector
parallel to all-ones unchanged, and so B leaves every vector that is constant in
each block unchanged.

Thus

|xT
||Mx||| = |xT

||Ax||

Let y be the vector such that yv is equal to the value that x|| has in the block
of v. Then

|xT
||Ax||| = 2

∑
{(v,i),(w,j)}∈EG z©H

yvyw = yTAGy = aD||y||2 ≤ a||x||||2

because y ⊥ 1 and ||y||2 = 1
D
||x||||2
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2. |xT
⊥Mx⊥| ≤ b2||x⊥||2 Because, from Cauchy-Schwarz and the fact that permu-

tation matrices preserve length, we have

|xT
⊥BABx⊥| ≤ ||Bx⊥|| · ||ABx⊥|| = ||Bx⊥||2

Now let us call xv
⊥ the restriction of x⊥ to coordinates of the form (v, i) for

i = 1, . . . , D. Then each xv
⊥ is orthogonal to the all-one vector and AHx

v
⊥ ≤

db||xv
⊥||, so

||Bx⊥||2 =
∑
v

||d−1AHx
v
⊥||2 ≤

∑
v

b2||xv
⊥||2 = b2||x⊥||2

3. 2|xT
||Mx⊥| ≤ b||x||2

Because, from Cauchy-Schwarz, the fact that Bx|| = x|| and the fact that
permutation matrices preserve length, we have

|xT
||BABx⊥| ≤ ||Bx|||| · ||ABx⊥|| = ||x|||| · ||Bx⊥||

and we proved above that
||Bx⊥|| ≤ b||x⊥||

so

|xT
||BABx⊥| ≤ b · ||x|||| · ||x⊥|| ≤

b

2
(||x||||2 + ||x⊥||2) =

b

2
||x||2

�

6


	Replacement Product and Zig-Zag Product
	Zig-zag product of two graphs
	A Technical Preliminary
	Analysis of the zig-zag Product

