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Lectures 16: Constructions of Expanders via the

Zig-Zag Graph Product

In which we give an explicit construction of expander graphs of polylogarithmic de-
gree, state the properties of the zig-zag product of graphs, and provide an explicit
construction of a family of constant-degree expanders using the zig-zag product and
the polylogarithmic-degree construction.

A family of expanders is a family of graphs Gn = (Vn, En), |Vn| = n, such that
each graph is dn-regular, and the edge-expansion of each graph is at least h, for
an absolute constant h independent of n. Ideally, we would like to have such a
construction for each n, although it is usually enough for most applications that, for
some constant c and every k, there is an n for which the construction applies in the
interval {k, k + 1, . . . , ck}, or even the interval {k, . . . , ckc}. We would also like the
degree dn to be slowly growing in n and, ideally, to be bounded above by an explicit
constant. Today we will see a simple construction in which dn = O(log2 n) and a
more complicated one in which dn = O(1).

An explicit construction of a family of expanders is a construction in which Gn is
“efficiently computable” given n. The weakest sense in which a construction is said
to be explicit is when, given n, the (adjacency matrix of the) graph Gn can be
constructed in time polynomial in n. A stronger requirement, which is necessary for
several applications, is that given n and i ∈ {1, . . . , n}, the list of neighbors of the
i-th vertex of Gn can be computed in time polynomial in log n.

In many explicit constructions of constant-degree expanders, the construction is ex-
tremely simple, and besides satisfying the stricter definition of “explicit” above, it is
also such that the adjacency list of a vertex is given by a “closed-form formula.” The
analysis of such constructions, however, usually requires very sophisticated mathe-
matical tools.

Example 1 Let p be a prime, and define the graph Gp = (Vp, Ep) in which Vp =
{0, . . . , p − 1}, and, for a ∈ Vp − {0}, the vertex a is connected to a + 1 mod p, to
a− 1 mod p and to its multiplicative inverse a−1 mod p. The vertex 0 is connected to
1, to p − 1, and has a self-loop. Counting self-loops, the graph is 3-regular: it is the
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union of a cycle over Vp and of a matching over the p− 3 vertices Vp − {0, 1, p− 1};
the vertices 0, 1, p − 1 have a self-loop each. There is a constant h > 0 such that,
for each p, the graph Gp has edge expansion at least h. Unfortunately, no elementary
proof of this fact is known. The graph G59 is shown in the picture below.

Constructions based on the zig-zag graph product, which we shall see next, are more
complicated to describe, but much simpler to analyze.

We begin by describing a building block in the construction, which is also an indepen-
dently interesting construction: a family of expanders with polylogarithmic degree,
which have both a very simple description and a very simple analysis.
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1 Expanders of Logarithmic Degree

Let p be a prime and t < p. We’ll construct a p2-regular multigraph LDp,t with pt+1

vertices. The vertex set of the graph will be the (t+1)-dimensional vextor space Ft+1
p

over Fp.

For each vertex x ∈ Ft+1
p , and every two scalars a, b ∈ F, we have the edges (x, x +

(b, ab, a2b, . . . , atb).

In other words, the graph LDp,t is a Cayley graph of the additive group of Ft+1
p ,

constructed using the generating multiset

S := {(b, ab, . . . , atb) : a, b ∈ Ft+1
p }

Note that the generating set is symmetric, that is, if s ∈ S then −s ∈ S (with the
same multiplicity), and so the resulting multigraph is undirected.

Let Ap,t be the adjacency matrix of LDp,t and Lp,t := I − p−2Ap,t be the normalized
Laplacian matrix. We will prove the following bound on the eigenvalues of Lp,t.

Theorem 2 For every prime p and every t < p, if we let 0 = λ1 ≤ λ2 ≤ · · ·λn be
the eigenvalues of M with multiplicities, then, for every i ∈ {2, . . . , n}

1− t

p
≤ λi ≤ 1

For example, setting t = bp/2c gives us a family of graphs such that λ2 ≥ 1/2 for
each graph in the family, and hence φ(G) ≥ 1/4, and the number of vertices is pp/2,
while the degree is p2, meaning the degree is O((log n/ log log n)2).

Proof: We will compute the eigenvalues of the adjacency matrix of Ap,t, and prove
that, except the largest one which is p2, all the others are non-negative and at most
pt.

Recall our characterization of the eigenvalues of the adjacency matrix of a Cayley
multigraph Cay(Γ, S) of an abelian group Γ with generating multiset S: we have one
eigenvector for each character χ of the group, and the corresponding eigenvalue is∑

s∈S χ(s).

What are the characters of the additive group of Ft+1
p ? It is the product of t+1 copies

of the additive group of Fp, or, equivalently, the product of t+ 1 copies of the cyclic
group Z/pZ. Following our rules for constructing the character of the cyclic group
and of products of groups, we see that the additive group of Ft+1

p has one character
for each (c0, . . . , ct) ∈ Ft+1

p , and the corresponding character is

χc0,...,ct(x0, . . . , xt) := ω
∑t
i=0 cixi
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where
ω := e

2πi
p

Thus, for each (c0, . . . , ct) ∈ Fp
t , we have an eigenvalue

λc0,...,ct :=
∑

a,b∈Fp

ω
∑t
i=0 ciba

i

When (c0, . . . , ct) = (0, . . . , 0) then the corresponding character is always equal to
one, and the corresponding eigenvalue is p2.

Now consider any (c0, . . . , ct) 6= (0, . . . , 0), and define the polynomial q(x) =
∑t

i=0 cix
i ∈

Fp[x]. Note that it is a non-zero polynomial of degree at most t, and so it has at most
t roots. The eigenvalue corresponding to (c0, . . . , ct) is

λc0,...,ct =
∑

a,b∈Fp

ω
∑t
i=0 b·q(a)

=
∑

a:q(a)=0

∑
b

ω0 +
∑

a:q(a)6=0

∑
b

ωb·q(a)

= p · |{a ∈ Fp : q(a) = 0}|

where we use the fact that, for every q 6= 0, the sum
∑

b ω
b·q equals zero, since it is

the sum of the values of the non-trivial character x → ωx·q, and we proved that, for
every non-trivial character, the sum is zero.

In conclusion, we have

0 ≤ λc0,...,ct ≤ pt

�

2 The Zig-Zag Graph Product

Given a d-regular graph G with adjacency matrix A, if λ1 ≥ λ2 ≥ . . . ≥ λn are the
eigenvalues of A with multiplicities we define

λ(G) := max
i=2,...,n

{|λi|}

In particular, λ(G) ≥ λ2, and if we are able to construct a family of graphs such that
λ(G) is at most a fixed constant bounded away from one times d, then we have a
family of expanders. (Our construction will be inductive and, as often happens with
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inductive proofs, it will be easier to maintain this stronger property than the property
that λ2 is bounded away from one.)

Given graphs G and H of compatible sizes, with small degree and large edge expan-
sion, the zig zag product G z©H is a method of constructing a larger graph also with
small degree and large edge expansion.

If:

• G a D-regular graph on n vertices, with λ(G) ≤ αD

• H a d-regular graph on D vertices, with λ(H) ≤ βd

Then:

• G z©H a d2-regular graph on nD vertices, with λ(G z©H) ≤ (α + β + β2)d2.

We will see the construction and analysis of the zig zag product in the next lecture.

For the remainder of today, we’ll see how to use the zig zag product to construct
arbitrarily large graphs of fixed degree with large edge expansion.

Fix a large enough constant d. (1369 = 372 will do.) Construct a d-regular graph
H on d4 vertices with λ2(H) ≤ d/5. (For example LD37,7 is a degree 372 graph on
37(7+1) = (372)4 vertices with λ2 ≤ 37× 7 < 372/5.)

For any graph G, let G2 represent the graph on the same vertex set whose edges are
the paths of length two in G. Thus G2 is the graph whose adjacency matrix is the
square of the adjacency matrix of G. Note that if G is r-regular then G2 is r2-regular

Using the H from above we’ll construct inductively, a family of progressively larger
graphs, all of which are d2-regular and have λ ≤ d2/2.

Let G1 = H2. For k ≥ 1 let Gk+1 = (G2
k) z©H.

Theorem 3 For each k ≥ 1, Gk has degree d2 and λ(Gk) ≤ d2/2.

Proof: We’ll prove this by induction.
Base case: G1 = H2 is d2-regular. Also, λ(H2) = (λ(H))2 ≤ d2/25.

Inductive step: Assume the statement for k, that is, Gk has degree d2 and λ(Gk) ≤
d2/2. Then G2

k has degree d4 = |V (H)|, so that the product (G2
k) z©H is defined.

Moreover, λ(G2
k) ≤ d4/4. Applying the construction, we get that Gk+1 has degree d2

and λ(Gk+1) ≤ (1
4

+ 1
5

+ 1
25

)d2 = 46
100
d2 This completes the proof. �

Finally note that Gk has d4k vertices.
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