
U.C. Berkeley — CS294: Spectral Methods and Expanders Handout 14
Luca Trevisan March 9, 2016

Last updated 3/10/2016

Lectures 14: ARV Analysis, part 3

In which we complete the analysis of the ARV rounding algorithm

We are finally going to complete the analysis of the Arora-Rao-Vazirani rounding algo-
rithm, which rounds a Semidefinite Programming solution of a relaxation of sparsest
cut into an actual cut, with an approximation ratio O(

√
log |V |).

In previous lectures, we reduced the analysis of the algorithm to the following claim.

Lemma 1 Let d(·, ·) be a semi-metric over a set C such that d(u, v) ≤ 1 for all
u, v ∈ C, let {xv}v∈C be a collection of vectors in Rm, such that d(i, j) := ||xu−xv||2
is a semimetric, let g be a random Gaussian vector in Rm, define Yv := 〈g,xv〉, and
suppose that, for every g, we can define a set of disjoint pairs Mg such that, with
probability 1 over g,

∀{u, v} ∈Mg. |Yu − Yv| ≥ σ ∧ d(u, v) ≤ `

and
∀u ∈ C. P[∃v.{u, v} ∈Mg] ≥ ε

Then

` ≥ Ωε,σ

(
1√

log |C|

)

1 An Inductive Proof that Gives a Weaker Result

In this section we will prove a weaker lower bound on `, of the order of 1

(log |C|)
2
3

. We

will then show how to modify the proof to obtain the tight result.

We begin will the following definitions. We define the ball or radius r centered at u
as

B(u, r) := {v ∈ C. d(u, v) ≤ r}
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We say that a point u ∈ C has the (p, r, δ)-Large-Projection-Property, or that it is
(p, r, δ)-LPP if

P
[

max
v∈B(u,r)

Yv − Yu ≥ p

]
≥ δ

Lemma 2 Under the assumptions of Lemma 1, there is a constant c4 > 0 (that

depends only on ε and σ) such that for all t ≤ c4 · 1√
`
, at least

(
ε
8

)t · |C| elements of

C have the
(
tσ
2
, t`, 1− ε

4

)
Large Projection Property.

Proof: We will prove the Lemma by induction on t. We call Ct the set of elements
of C that are

(
tσ
2
, t`, 1− ε

4

)
-LPP

Let M ′
g be the set of ordered pairs (u, v) such that {u, v} ∈ Mg and Yv > Yu, and

hence Yv − Yu ≥ σ. Because g and −g have the same distribution, we have that, for
every u ∈ C, there is probability ≥ ε/2 that there is a v ∈ C such that (v, u) ∈ M ′

g

(a fact that we will use in the inductive step).

For the base case t = 0 there is nothing to prove.

For the inductive case, define the function F : Ct → C (which will be a random
variable dependent on g) such that F (v) is the lexicographically smallest w ∈ B(v, t`)
such that Yw − Yv ≥ σ if such a w exists, and F (v) = ⊥ otherwise. The definition of
Ct is that P[F (v) 6= ⊥] ≥ 1 − ε/4 for every v ∈ Ct, and the inductive assumption is
that |Ct| ≥ |C| · (ε/8)t .

By a union bound, for every v ∈ Ct, there is probability at least ε/4 that there is
an u ∈ C such that (u, v) ∈ M ′

g and F (v) = w 6= ⊥. In this case, we will define
F ′(u) = w, otherwise F ′(u) = ⊥.

Note that the above definition is consistent, because M ′
g is a set of disjoint pairs, so

for every u there is at most one v that could be used to define F ′(u). We also note
that, if F ′(u) = w 6= ⊥, then

Yw − Yu ≥ t · σ
2

+ σ ,

d(u,w) ≤ (t+ 1) · `

and ∑
u∈C

P[F ′(u) 6= ⊥] =
∑
v∈Ct

[F (v) 6= ⊥ ∧ ∃u.(u, v) ∈M ′
g] ≥ |Ct| ·

ε

4

Now we can use another averaging argument to say that there have to be at least
|Ct| · ε8 elements u of C such that

P[F ′(u) 6= ⊥] ≥ ε

8
· |Ct|
|C|
≥
( ε

8

)t+1
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Let us call Ct+1 the set of such element. As required, |Ct+1| ≥ |C| · (ε/8)t+1.

By applying concentration of measure, the fact that, for every u ∈ Ct+1 we have

P
[

max
w∈B(u,(t+1)·`)

Yw − Yu ≥ (t+ 1)
σ

2
+
σ

2

]
≥
( ε

8

)t+1

implies that, for every u ∈ Ct+1

P

[
max

w∈B(u,(t+1)·`)
Yw − Yu ≥ (t+ 1)

σ

2
+
σ

2
− c3

√
log

4 · 8t+1

εt+2

√
(t+ 1) · `

]
≥ 1− ε

4

and the inductive step is proved, provided

σ

2
≥ c3

√
(t+ 2) · log

8

ε

√
(t+ 1) · `

which is true when

t+ 2 ≤ σ

2c3
√

log 8/ε
· 1√

`

which proves the lemma if we choose c4 appropriately. �

Applying the previous lemma with t = c4/
√
`, we have that, with probability Ω(1),

there is a pair u, v in C such that

Yv − Yu ≥ Ω(1/
√
`)

and
d(u, v) ≤ O(

√
`)

but we also know that, with 1− o(1) probability, for all pairs u, v in C,

|Yv − Yu|2 ≤ O(log |C|) · d(i, j)

and so
1

`
≤ O(log |C|)

√
`

implying

` ≥ Ω

(
1

(log |C|)2/3

)
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2 The Tight Bound

In the result proved in the previous section, we need σ
2
, which is a constant, to be

bigger than the loss incurred in the application of concentration of measure, which
is of the order of t

√
`. A factor of

√
t` simply comes from the distances between the

points that we are considering; an additional factor of
√
t comes from the fact that

we need to push up the probability from a bound that is exponentially small in t.

The reason for such a poor probability bound is the averaging argument: each element
of Ct has probability Ω(1) of being the “middle point” of the construction, so that
the sum over the elements u of C of the probability that u has F ′(u) 6= ⊥ adds up
to Ω(|Ct|); such overall probability, however, could be spread out over all of C, with
each element of C getting a very low probability of the order of |Ct|/|C|, which is
exponentially small in t.

Not all elements of C, however, can be a u for which F ′(u) 6= ⊥; this is only possible
for elements u that are within distance ` from Ct. If the set Γ`(Ct) := {u : ∃v ∈ Ct :
d(u, v) ≤ `} has cardinality of the same order of Ct, then we only lose a constant
factor in the probability, and we do not pay the extra

√
t term in the application of

concentration of measure. But what do we do if Γ`(Ct) is much bigger than Ct? In
that case we may replace Ct and Γ`(Ct) and have similar properties.

Lemma 3 Under the assumptions of Lemma 1, if S ⊆ C is a set of points such that
for every v ∈ S

P
[

max
w∈B(v,d)

Yw − Yv ≥ p

]
≥ ε

then, for every distance D, every k > 0, and every u ∈ ΓD(S)

P
[

max
w∈B(u,d+D)

Yw − Yu ≥ p−
√
D · k

]
≥ ε− e−k2/2

That is, if all the elements of S are (p, d, ε)-LPP, then all the elements of ΓD(S) are
(p− k

√
D, d+D, ε− e−k2/2)-LPP.

Proof: If u ∈ ΓD(S), then there is v ∈ S such that d(u, v) ≤ D, and, with probability
1− e−k2/2 we have Yu − Yv ≤

√
D · k. The claim follows from a union bound. �

Lemma 4 Under the assumptions of Lemma 1, there is a constant c5 > 0 (that
depends only on ε and σ) such that for all t ≤ c5 · 1` , there is a set Ct ⊆ C such that

|Ct| ≥ |C| · (ε/8)t, every element of Ct is
(
t · σ

4
,
(

2t+ log 8
ε

|Ct|
|C|

)
· `, 1− ε

4

)
-LPP, and

|Γ`(Ct)| ≤
8

ε
|Ct|
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Proof: The base case t = 0 is proved by setting C0 = C.

For the inductive step, we define F (·) and F ′(·) as in the proof of Lemma 2. We have
that if F ′(u) = w 6= ⊥, then

Yw − Yu ≥ t · σ
4

+ σ ,

d(u,w) ≤
(

2t+ log 8
ε

|Ct|
|C|

)
· `+ ` ,

and ∑
u∈C

P[F ′(u) 6= ⊥] =
∑
v∈Ct

[F (v) 6= ⊥ ∧ ∃u.(u, v) ∈M ′
g] ≥ |Ct| ·

ε

4

Now we can use another averaging argument to say that there have to be at least
|Ct| · ε8 elements u of C such that

P[F ′(u) 6= ⊥] ≥ ε

8
· |Ct|
|Γ`(Ct)|

≥
(
ε2

64

)
Let us call C

(0)
t+1 the set of such elements.

Define C
(1)
t+1 := Γ`(C

(0)
t+1), C

(2)
t+1 := Γ`(C

(1)
t+1), and so on, and let k be the first time such

that |C(k+1)
t+1 | ≤ 8

ε
|C(k)

t+1|. We will define Ct+1 := C
(k)
t+1. Note that

|Ct+1| ≥
(

8

ε

)k
· |C(0)

t+1| ≥
(

8

ε

)k−1
· |Ct| ≥

(
8

ε

)k−1−t
|C|

which implies that k ≤ t+ 1.

We have |Ct+1| ≥ |C(0)
t+1| ≥ ε

8
|Ct| so we satisfy the inductive claim about the size of

Ct. Regarding the other properties, we note that Ct+1 ⊆ Γk`(C
(0)
t+1), and that every

element of C
(0)
t+1 is (

t
σ

4
+ σ,

(
2t+ 1 + log 8

ε

|Ct|
|C|

)
· `, ε

2

64

)
− LPP

so we also have that every element of Ct+1 is(
t
σ

4
+
σ

2
,

(
2t+ 1 + k + log 8

ε

|Ct|
|C|

)
· `, ε

2

128

)
− LPP

provided

σ

2
≥
√

2 log
128

ε2
· k`

which we can satisfy with an appropriate choice of c4, recalling that k ≤ t+ 1.
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Then we apply concentration of measure to deduce that every element of Ct+1 is(
t
σ

4
+
σ

4
,

(
2t+ 1 + k + log 8

ε

|Ct|
|C|

)
· `, 1− ε

4

)
− LPP

provided that

σ

4
≥ c3

√
log

512

ε3
·
(

2t+ 1 + k + log 8
ε

|Ct|
|C|

)
· `

which we can again satisfy with an appropriate choice of c4, because k ≤ t + 1 and
log 8

ε

|Ct|
|C| is smaller than or equal to zero.

Finally,

2t+ 1 + k + log 8
ε

|Ct|
|C|
≤ 2t+ 2 + log 8

ε

|Ct+1|
|C|

because, as we established above,

|Ct+1| ≥
(

8

ε

)k−1
|Ct|

�

By applying Lemma 4 with t = Ω(1/`), we find that there is Ω(1) probability that
there are u, v in C such that

Yj − Yi ≥ Ω(1/`)

d(i, j) ≤ 1

|Yi − Yj|2 ≤ O(log n) · d(i, j)

which, together, imply

` ≥ Ω

(
1√

log n

)
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