Last updated 3/10/2016

Lectures 14: ARV Analysis, part 3

In which we complete the analysis of the ARV rounding algorithm

We are finally going to complete the analysis of the Arora-Rao-Vazirani rounding algorithm, which rounds a Semidefinite Programming solution of a relaxation of sparsest cut into an actual cut, with an approximation ratio $O(\sqrt{\log |V|})$.

In previous lectures, we reduced the analysis of the algorithm to the following claim.

Lemma 1 Let $d(\cdot, \cdot)$ be a semi-metric over a set C such that $d(u, v) \leq 1$ for all $u, v \in C$, let $\{\mathbf{x}_v\}_{v \in C}$ be a collection of vectors in \mathbb{R}^m , such that $d(i, j) := ||\mathbf{x}_u - \mathbf{x}_v||^2$ is a semimetric, let \mathbf{g} be a random Gaussian vector in \mathbb{R}^m , define $Y_v := \langle \mathbf{g}, \mathbf{x}_v \rangle$, and suppose that, for every \mathbf{g} , we can define a set of disjoint pairs $M_{\mathbf{g}}$ such that, with probability 1 over \mathbf{g} ,

$$\forall \{u, v\} \in M_{\mathbf{g}}. \ |Y_u - Y_v| \ge \sigma \ \land \ d(u, v) \le \ell$$

and

$$\forall u \in C. \ \mathbb{P}[\exists v.\{u,v\} \in M_{\mathbf{g}}] \ge \epsilon$$

Then

$$\ell \ge \Omega_{\epsilon,\sigma} \left(\frac{1}{\sqrt{\log |C|}} \right)$$

1 An Inductive Proof that Gives a Weaker Result

In this section we will prove a weaker lower bound on ℓ , of the order of $\frac{1}{(\log |C|)^{\frac{2}{3}}}$. We will then show how to modify the proof to obtain the tight result.

We begin will the following definitions. We define the ball or radius r centered at u as

$$B(u,r) := \{ v \in C. \ d(u,v) \le r \}$$

We say that a point $u \in C$ has the (p, r, δ) -Large-Projection-Property, or that it is (p, r, δ) -LPP if

$$\mathbb{P}\left[\max_{v\in B(u,r)}Y_v - Y_u \ge p\right] \ge \delta$$

Lemma 2 Under the assumptions of Lemma 1, there is a constant $c_4 > 0$ (that depends only on ϵ and σ) such that for all $t \leq c_4 \cdot \frac{1}{\sqrt{\ell}}$, at least $\left(\frac{\epsilon}{8}\right)^t \cdot |C|$ elements of C have the $\left(t\frac{\sigma}{2}, t\ell, 1-\frac{\epsilon}{4}\right)$ Large Projection Property.

PROOF: We will prove the Lemma by induction on t. We call C_t the set of elements of C that are $\left(t\frac{\sigma}{2}, t\ell, 1-\frac{\epsilon}{4}\right)$ -LPP

Let $M'_{\mathbf{g}}$ be the set of *ordered* pairs (u, v) such that $\{u, v\} \in M_{\mathbf{g}}$ and $Y_v > Y_u$, and hence $Y_v - Y_u \ge \sigma$. Because \mathbf{g} and $-\mathbf{g}$ have the same distribution, we have that, for every $u \in C$, there is probability $\ge \epsilon/2$ that there is a $v \in C$ such that $(v, u) \in M'_{\mathbf{g}}$ (a fact that we will use in the inductive step).

For the base case t = 0 there is nothing to prove.

For the inductive case, define the function $F : C_t \to C$ (which will be a random variable dependent on **g**) such that F(v) is the lexicographically smallest $w \in B(v, t\ell)$ such that $Y_w - Y_v \ge \sigma$ if such a w exists, and $F(v) = \bot$ otherwise. The definition of C_t is that $\mathbb{P}[F(v) \ne \bot] \ge 1 - \epsilon/4$ for every $v \in C_t$, and the inductive assumption is that $|C_t| \ge |C| \cdot (\epsilon/8)^t$.

By a union bound, for every $v \in C_t$, there is probability at least $\epsilon/4$ that there is an $u \in C$ such that $(u, v) \in M'_{\mathbf{g}}$ and $F(v) = w \neq \bot$. In this case, we will define F'(u) = w, otherwise $F'(u) = \bot$.

Note that the above definition is consistent, because $M'_{\mathbf{g}}$ is a set of disjoint pairs, so for every u there is at most one v that could be used to define F'(u). We also note that, if $F'(u) = w \neq \bot$, then

$$Y_w - Y_u \ge t \cdot \frac{\sigma}{2} + \sigma ,$$

$$d(u, w) \le (t+1) \cdot \ell$$

and

$$\sum_{u \in C} \mathbb{P}[F'(u) \neq \bot] = \sum_{v \in C_t} [F(v) \neq \bot \land \exists u.(u,v) \in M'_{\mathbf{g}}] \ge |C_t| \cdot \frac{\epsilon}{4}$$

Now we can use another averaging argument to say that there have to be at least $|C_t| \cdot \frac{\epsilon}{8}$ elements u of C such that

$$\mathbb{P}[F'(u) \neq \bot] \ge \frac{\epsilon}{8} \cdot \frac{|C_t|}{|C|} \ge \left(\frac{\epsilon}{8}\right)^{t+1}$$

Let us call C_{t+1} the set of such element. As required, $|C_{t+1}| \ge |C| \cdot (\epsilon/8)^{t+1}$. By applying concentration of measure, the fact that, for every $u \in C_{t+1}$ we have

$$\mathbb{P}\left[\max_{w\in B(u,(t+1)\cdot\ell)} Y_w - Y_u \ge (t+1)\frac{\sigma}{2} + \frac{\sigma}{2}\right] \ge \left(\frac{\epsilon}{8}\right)^{t+1}$$

implies that, for every $u \in C_{t+1}$

$$\mathbb{P}\left[\max_{w\in B(u,(t+1)\cdot\ell)} Y_w - Y_u \ge (t+1)\frac{\sigma}{2} + \frac{\sigma}{2} - c_3\sqrt{\log\frac{4\cdot 8^{t+1}}{\epsilon^{t+2}}}\sqrt{(t+1)\cdot\ell}\right] \ge 1 - \frac{\epsilon}{4}$$

and the inductive step is proved, provided

$$\frac{\sigma}{2} \ge c_3 \sqrt{(t+2) \cdot \log \frac{8}{\epsilon}} \sqrt{(t+1) \cdot \ell}$$

which is true when

$$t+2 \le \frac{\sigma}{2c_3\sqrt{\log 8/\epsilon}} \cdot \frac{1}{\sqrt{\ell}}$$

which proves the lemma if we choose c_4 appropriately. \Box

Applying the previous lemma with $t = c_4/\sqrt{\ell}$, we have that, with probability $\Omega(1)$, there is a pair u, v in C such that

$$Y_v - Y_u \ge \Omega(1/\sqrt{\ell})$$

and

$$d(u,v) \le O(\sqrt{\ell})$$

but we also know that, with 1 - o(1) probability, for all pairs u, v in C,

$$|Y_v - Y_u|^2 \le O(\log |C|) \cdot d(i, j)$$

and so

$$\frac{1}{\ell} \le O(\log |C|)\sqrt{\ell}$$

implying

$$\ell \geq \Omega\left(\frac{1}{(\log |C|)^{2/3}}\right)$$

2 The Tight Bound

In the result proved in the previous section, we need $\frac{\sigma}{2}$, which is a constant, to be bigger than the loss incurred in the application of concentration of measure, which is of the order of $t\sqrt{\ell}$. A factor of $\sqrt{t\ell}$ simply comes from the distances between the points that we are considering; an additional factor of \sqrt{t} comes from the fact that we need to push up the probability from a bound that is exponentially small in t.

The reason for such a poor probability bound is the averaging argument: each element of C_t has probability $\Omega(1)$ of being the "middle point" of the construction, so that the sum over the elements u of C of the probability that u has $F'(u) \neq \bot$ adds up to $\Omega(|C_t|)$; such overall probability, however, could be spread out over all of C, with each element of C getting a very low probability of the order of $|C_t|/|C|$, which is exponentially small in t.

Not all elements of C, however, can be a u for which $F'(u) \neq \bot$; this is only possible for elements u that are within distance ℓ from C_t . If the set $\Gamma_\ell(C_t) := \{u : \exists v \in C_t : d(u, v) \leq \ell\}$ has cardinality of the same order of C_t , then we only lose a constant factor in the probability, and we do not pay the extra \sqrt{t} term in the application of concentration of measure. But what do we do if $\Gamma_\ell(C_t)$ is much bigger than C_t ? In that case we may replace C_t and $\Gamma_\ell(C_t)$ and have similar properties.

Lemma 3 Under the assumptions of Lemma 1, if $S \subseteq C$ is a set of points such that for every $v \in S$

$$\mathbb{P}\left[\max_{w\in B(v,d)}Y_w - Y_v \ge p\right] \ge \epsilon$$

then, for every distance D, every k > 0, and every $u \in \Gamma_D(S)$

$$\mathbb{P}\left[\max_{w\in B(u,d+D)} Y_w - Y_u \ge p - \sqrt{D} \cdot k\right] \ge \epsilon - e^{-k^2/2}$$

That is, if all the elements of S are (p, d, ϵ) -LPP, then all the elements of $\Gamma_D(S)$ are $(p - k\sqrt{D}, d + D, \epsilon - e^{-k^2/2})$ -LPP.

PROOF: If $u \in \Gamma_D(S)$, then there is $v \in S$ such that $d(u, v) \leq D$, and, with probability $1 - e^{-k^2/2}$ we have $Y_u - Y_v \leq \sqrt{D} \cdot k$. The claim follows from a union bound. \Box

Lemma 4 Under the assumptions of Lemma 1, there is a constant $c_5 > 0$ (that depends only on ϵ and σ) such that for all $t \leq c_5 \cdot \frac{1}{\ell}$, there is a set $C_t \subseteq C$ such that $|C_t| \geq |C| \cdot (\epsilon/8)^t$, every element of C_t is $\left(t \cdot \frac{\sigma}{4}, \left(2t + \log_{\frac{8}{\epsilon}} \frac{|C_t|}{|C|}\right) \cdot \ell, 1 - \frac{\epsilon}{4}\right)$ -LPP, and

$$|\Gamma_{\ell}(C_t)| \le \frac{8}{\epsilon} |C_t|$$

PROOF: The base case t = 0 is proved by setting $C_0 = C$.

For the inductive step, we define $F(\cdot)$ and $F'(\cdot)$ as in the proof of Lemma 2. We have that if $F'(u) = w \neq \bot$, then

$$\begin{split} Y_w - Y_u &\geq t \cdot \frac{\sigma}{4} + \sigma \ , \\ d(u,w) &\leq \left(2t + \log_{\frac{8}{\epsilon}} \frac{|C_t|}{|C|} \right) \cdot \ell + \ell \end{split}$$

and

$$\sum_{u \in C} \mathbb{P}[F'(u) \neq \bot] = \sum_{v \in C_t} [F(v) \neq \bot \land \exists u.(u,v) \in M'_{\mathbf{g}}] \ge |C_t| \cdot \frac{\epsilon}{4}$$

Now we can use another averaging argument to say that there have to be at least $|C_t| \cdot \frac{\epsilon}{8}$ elements u of C such that

$$\mathbb{P}[F'(u) \neq \bot] \ge \frac{\epsilon}{8} \cdot \frac{|C_t|}{|\Gamma_\ell(C_t)|} \ge \left(\frac{\epsilon^2}{64}\right)$$

Let us call $C_{t+1}^{(0)}$ the set of such elements.

Define $C_{t+1}^{(1)} := \Gamma_{\ell}(C_{t+1}^{(0)}), C_{t+1}^{(2)} := \Gamma_{\ell}(C_{t+1}^{(1)})$, and so on, and let k be the first time such that $|C_{t+1}^{(k+1)}| \leq \frac{8}{\epsilon} |C_{t+1}^{(k)}|$. We will define $C_{t+1} := C_{t+1}^{(k)}$. Note that

$$|C_{t+1}| \ge \left(\frac{8}{\epsilon}\right)^k \cdot |C_{t+1}^{(0)}| \ge \left(\frac{8}{\epsilon}\right)^{k-1} \cdot |C_t| \ge \left(\frac{8}{\epsilon}\right)^{k-1-t} |C|$$

which implies that $k \leq t + 1$.

We have $|C_{t+1}| \ge |C_{t+1}^{(0)}| \ge \frac{\epsilon}{8}|C_t|$ so we satisfy the inductive claim about the size of C_t . Regarding the other properties, we note that $C_{t+1} \subseteq \Gamma_{k\ell}(C_{t+1}^{(0)})$, and that every element of $C_{t+1}^{(0)}$ is

$$\left(t\frac{\sigma}{4} + \sigma, \left(2t + 1 + \log_{\frac{8}{\epsilon}}\frac{|C_t|}{|C|}\right) \cdot \ell, \frac{\epsilon^2}{64}\right) - \text{LPP}$$

so we also have that every element of C_{t+1} is

$$\left(t\frac{\sigma}{4} + \frac{\sigma}{2}, \left(2t + 1 + k + \log_{\frac{8}{\epsilon}}\frac{|C_t|}{|C|}\right) \cdot \ell, \frac{\epsilon^2}{128}\right) - \text{LPP}$$

provided

$$\frac{\sigma}{2} \geq \sqrt{2\log\frac{128}{\epsilon^2}} \cdot k\ell$$

which we can satisfy with an appropriate choice of c_4 , recalling that $k \leq t + 1$.

Then we apply concentration of measure to deduce that every element of C_{t+1} is

$$\left(t\frac{\sigma}{4} + \frac{\sigma}{4}, \left(2t + 1 + k + \log_{\frac{8}{\epsilon}}\frac{|C_t|}{|C|}\right) \cdot \ell, 1 - \frac{\epsilon}{4}\right) - \text{LPP}$$

provided that

$$\frac{\sigma}{4} \ge c_3 \sqrt{\log \frac{512}{\epsilon^3}} \cdot \left(2t + 1 + k + \log_{\frac{8}{\epsilon}} \frac{|C_t|}{|C|}\right) \cdot \ell$$

which we can again satisfy with an appropriate choice of c_4 , because $k \leq t+1$ and $\log_{\frac{8}{\epsilon}} \frac{|C_t|}{|C|}$ is smaller than or equal to zero. Finally,

$$2t+1+k+\log_{\frac{8}{\epsilon}}\frac{|C_t|}{|C|} \leq 2t+2+\log_{\frac{8}{\epsilon}}\frac{|C_{t+1}|}{|C|}$$

because, as we established above,

$$|C_{t+1}| \ge \left(\frac{8}{\epsilon}\right)^{k-1} |C_t|$$

By applying Lemma 4 with $t = \Omega(1/\ell)$, we find that there is $\Omega(1)$ probability that there are u, v in C such that

$$Y_j - Y_i \ge \Omega(1/\ell)$$
$$d(i, j) \le 1$$
$$|Y_i - Y_j|^2 \le O(\log n) \cdot d(i, j)$$

which, together, imply

$$\ell \ge \Omega\left(\frac{1}{\sqrt{\log n}}\right)$$