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Lectures 14: ARV Analysis, part 3

In which we complete the analysis of the ARV rounding algorithm

We are finally going to complete the analysis of the Arora-Rao-Vazirani rounding algo-
rithm, which rounds a Semidefinite Programming solution of a relaxation of sparsest
cut into an actual cut, with an approximation ratio O(y/log|V]).

In previous lectures, we reduced the analysis of the algorithm to the following claim.

Lemma 1 Let d(-,-) be a semi-metric over a set C' such that d(u,v) < 1 for all
u,v € C, let {X,}vec be a collection of vectors in R™, such that d(i, j) := ||x, — X, ||?
is a semimetric, let g be a random Gaussian vector in R™, define Y, := (g, x,), and
suppose that, for every g, we can define a set of disjoint pairs Mg such that, with
probability 1 over g,

V{u,v} € Mg. |Y, =Y, >0 A d(u,v) </

and
Vu € C. P[Fv{u,v} € Mg] > ¢

Then
E Z QEO’ ;
"\ Vlog|C

1 An Inductive Proof that Gives a Weaker Result

In this section we will prove a weaker lower bound on ¢, of the order of 0 |1C|)2 . We
og 3

will then show how to modify the proof to obtain the tight result.
We begin will the following definitions. We define the ball or radius r centered at u

B(u,r) :=={v e C. d(u,v) <r}



We say that a point u € C has the (p,r,d)-Large-Projection-Property, or that it is
(p,r,0)-LPP if

P| max Y, —-Y,>p| >0
vEB(u,r)

Lemma 2 Under the assumptions of Lemma 1, there is a constant ¢4 > 0 (that
depends only on € and o) such that for all t < ¢4 - \/L@ at least (g)t -|C] elements of
C have the (t%, tl,1 — i) Large Projection Property.

Proor: We will prove the Lemma by induction on ¢t. We call C; the set of elements
of C' that are (t%,tﬁ, 1— i)—LPP

Let M be the set of ordered pairs (u,v) such that {u,v} € Mg and Y, > Y, and
hence Y, — Y, > 0. Because g and —g have the same distribution, we have that, for
every u € C, there is probability > /2 that there is a v € C' such that (v,u) € Mg
(a fact that we will use in the inductive step).

For the base case t = 0 there is nothing to prove.

For the inductive case, define the function F' : C; — C' (which will be a random
variable dependent on g) such that F'(v) is the lexicographically smallest w € B(v, t¢)
such that Y, — Y, > o if such a w exists, and F'(v) = L otherwise. The definition of
Cy is that P[F(v) # L] > 1 —€¢/4 for every v € C}, and the inductive assumption is
that |Cy] > |C| - (¢/8)" .

By a union bound, for every v € Cy, there is probability at least €/4 that there is
an u € C such that (u,v) € My and F(v) = w # L. In this case, we will define
F'(u) = w, otherwise F'(u) = L.

Note that the above definition is consistent, because Mé is a set of disjoint pairs, so

for every u there is at most one v that could be used to define F’(u). We also note
that, if F'(u) =w # L, then

Yw—Yu2t~%—|—a,

d(u,w) < (t+1)- /¢

and

STPIF(w) £ 1) = Y [F(v) # L A3u(u,v) € M| > |C] .i

ueC veCy

Now we can use another averaging argument to say that there have to be at least
|Cy| - § elements u of C' such that

P[F'(u) # 1] > g Gl o <§>t+1

\)



Let us call Cy;; the set of such element. As required, |Cy, 1| > |C| - (e/8)1FL.

By applying concentration of measure, the fact that, for every u € Cy,; we have

Y, v, >+ D2+ 2 > ()
P wesg,%ﬁn-z) woYuz (EF >§+§ - <§>

implies that, for every u € C}yq

o o 4 . 8tt+1
max Y, —Y,>({t+1)-+ = —c3 logetT

t+ 14 >1—
P weB(u,(t+1)-£) 2 2 (t+1) -

RN

and the inductive step is proved, provided

%203 (75—1—2)-10g§ (t+1)-¢
€

which is true when
t+

o 1
9<% .-
= 2c34/log8/e I

which proves the lemma if we choose ¢4 appropriately. [J

Applying the previous lemma with t = ¢4/ V0, we have that, with probability Q(1),
there is a pair u,v in C' such that

Y, — Y, > Q(1/V0)

and

d(u,v) < O(V)

but we also know that, with 1 — o(1) probability, for all pairs u,v in C,
¥, — Y, < Olog |CY) - d(i.

and so

implying

EEQ(W)



2 The Tight Bound

In the result proved in the previous section, we need 7, which is a constant, to be
bigger than the loss incurred in the application of concentration of measure, which
is of the order of tv/£. A factor of v/t¢ simply comes from the distances between the
points that we are considering; an additional factor of v/t comes from the fact that

we need to push up the probability from a bound that is exponentially small in .

The reason for such a poor probability bound is the averaging argument: each element
of C; has probability Q(1) of being the “middle point” of the construction, so that
the sum over the elements u of C' of the probability that u has F'(u) # L adds up
to Q(|Cy]); such overall probability, however, could be spread out over all of C, with
each element of C' getting a very low probability of the order of |Cy|/|C|, which is
exponentially small in ¢.

Not all elements of C', however, can be a u for which F'(u) # L; this is only possible
for elements u that are within distance ¢ from C;. If the set T'y(Cy) := {u: Jv € C; :
d(u,v) < £} has cardinality of the same order of Cy, then we only lose a constant
factor in the probability, and we do not pay the extra v/t term in the application of
concentration of measure. But what do we do if I',(C;) is much bigger than C;? In
that case we may replace Cy and I';(C}) and have similar properties.

Lemma 3 Under the assumptions of Lemma 1, if S C C' is a set of points such that
for every v € S

IP’[ max Yw—YLZp] > €
weB(v,d)

then, for every distance D, every k > 0, and every u € I'p(5)

IP[ max Yw—Yuzp—\/B-kl 2€—€_k2/2

wéeB(u,d+D)

That is, if all the elements of S are (p,d,€)-LPP, then all the elements of I'p(S) are
(p—kvVD,d+ D,e — e */?)-LPP.

PROOF: Ifu € T'p(9), then thereis v € S such that d(u,v) < D, and, with probability
1 — e ¥*/2 we have Y, — Y, <D - k. The claim follows from a union bound. [J

Lemma 4 Under the assumptions of Lemma 1, there is a constant c¢5 > 0 (that
depends only on € and o) such that for all t < c5 - %, there is a set Cy C C such that

|Ci| > |C] - (¢/8)", every element of Cy is (t- 7, (215 + logs %) 41— i) -LPP, and

8
Tu(Co)l < 2[c)



PROOF: The base case t = 0 is proved by setting Cy = C.

For the inductive step, we define F'(-) and F’(+) as in the proof of Lemma 2. We have
that if F'(u) = w # L, then

and

S PIF(u) £ L] = > [F(v) £ LA Ju(u,v) € My > |Cy - i

ueC veCly

Now we can use another averaging argument to say that there have to be at least
|Cy| - § elements u of C' such that

|Cil €
HE #4025 oy > (5)

co |

Let us call C’t(?r)l the set of such elements.

Define C! +)1 = Fg(C’t(S)r)l) C’ti)l = FZ(C’SF)I), and so on, and let k£ be the first time such
that |C’gf;r1 | < €|C’t(_’i1|. We will define Cy4q := C’éf_)l. Note that

8 k 8 k—1 8 k—1—t
Gl 2 (3) ez () ez () 1o

which implies that £ <t + 1.

We have |Cyiq| > ]Ct(f)rl\ > ¢|Cy| so we satisfy the inductive claim about the size of

C. Regardmg the other properties, we note that Cy; C I’M(Ct( 1), and that every

17 o (21410 1) 0 ) Zrpp
—_— 0’ 0 . — —_—

4 ) g 7 64

so we also have that every element of Cy;4 is

o |y 2
7 %+ 1+4k+]1 0, <) —Lpp
(4+2( +++g|0|) 128)

12
,/zlog—S ket

which we can satisfy with an appropriate choice of ¢4, recalling that £ <t 4 1.

element of C’t 1 s

provided

5



Then we apply concentration of measure to deduce that every element of C;,q is

o o |Cy| €
t—+—, | 2t+ 14+ k+1 —-41—-)—LPP
(545 (are v ) 1= )

o [ 512 C
1203 loge—g- (2t+1+k:—i—log§ |Ct||> 0

which we can again satisfy with an appropriate choice of ¢4, because £ < t 4+ 1 and
|C|

provided that

logs 1 is smaller than or equal to zero.
Finally,
|Gl |Cin]
2t+ 1+ k+logs — < 2t+ 2+ logs
- |C] < [C]

because, as we established above,

] k—1
coal 2 ()1

O

By applying Lemma 4 with ¢ = (1/¢), we find that there is (1) probability that
there are u, v in C' such that
Y- ;= Q(1/0)

di, j) <1
|¥; = Y;|* < O(logn) - d(i, 5)
which, together, imply

=0 (75e)
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