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Lectures 13 and 14: ARV Analysis cont’d

In which we continue the analysis of the ARV rounding algorithm

We are continuing the analysis of the Arora-Rao-Vazirani rounding algorithm, which
rounds a Semidefinite Programming solution of a relaxation of sparsest cut into an
actual cut, with an approximation ratio O(

√
log |V |).

In previous lectures, we reduced the analysis of the algorithm to the following claim.

Lemma 1 Let d(·, ·) be a negative-type semimetric over a set V = {1, . . . , n}, let
x1, . . . ,xn ∈ Rm be vectors such that d(i, j) = ||xi − xj||2, let g ∼ Rm be a random
vector with a Gaussian distribution, and let Yi := 〈g,xi〉.
Suppose that, for constants c′, σ and a parameter `, we have that there is a ≥ 10%
probability that there are at least c′n pairs (i, j) such that d(i, j) ≤ ` and |Yi−Yj| ≥ σ.

Then there is a constant c2, that depends only on c′ and σ, such that

` ≥ c2√
log n

1 Concentration of Measure

In the last lecture, we are have already introduced two useful properties of Gaussian
distributions: that there is a small probability of being much smaller than the stan-
dard deviation in absolute value, and a very small probability of being much larger
than the standard deviation in absolute value. Here we introduce a third property of
a somewhat different flavor.

For a set A ⊆ Rn and a distance parameter D, define

AD := {x ∈ Rm : ∃a ∈ A. ||x− a|| ≤ D}

the set of points at distance at most D from A. Then we have:
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Theorem 2 (Gaussian concentration of measure) There is a constant c3 such
that, for every ε, δ > 0 and for every set A ⊆ Rn, if

P[A] ≥ ε

then

P[AD] ≥ 1− δ

for every D ≥ c3 ·
√

log 1
εδ

, where the probabilities are taken according to the Gaussian

measure in Rm, that is P[A] = P[g ∈ A], where g = (g1, . . . , gm) and the gi are
independent Gaussians of mean 0 and variance 1.

The above theorem says that if we have some property that is true with ≥ 1%
probability for a random Gaussian vector g, then there is a ≥ 99% probability that
g is within distance O(1) of a vector g′ that satisfies the required property. In high
dimension m, this is a non-trivial statement because, with very high probability ||g||
is about

√
m, and so the distance between g and g′ is small relative to the length of

the vector.

We will use the following corollary.

Corollary 3 Let x1, . . . ,xn be vectors in Rm and let dmax = maxj=2,...,n ||xj − x1||2.
Let g be a random Gaussian vector in Rm, and let Yi = 〈xi,g〉. If, for some k and ε,
we have

P[∃j. Yj − Y1 ≥ k] ≥ ε

then

P[∃j. Yj − Y1 ≥ k − c3

√
log 1/(εγ) ·

√
dmax] ≥ 1− γ

Proof: Let
A := {g : ∃j. Yj − Y1 ≥ k] ≥ ε

By assumption, we have P[A] ≥ ε, and so, by concentration of measure:

P[∃g′. ||g − g′|| ≤ c3

√
log 1/(εγ) ∧ g′ ∈ A] ≥ 1− γ

The even in the above probability can be rewritten as

∃g′ ∈ Rm ∃j ∈ {2, . . . , n}. ||g − g′|| ≤ c3

√
log

1

εγ
∧ 〈xj − x1,g

′〉 ≥ k

and the above condition gives us

k ≤ 〈xj − x1,g
′〉

= 〈xj − x1,g〉+ 〈xj − x1,g
′ − g〉
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≤ 〈xj − x1,g〉+ ||xj − x1|| · ||g′ − g||

≤ Yj − Y1 +
√
dmax · c3

√
log

1

εγ

�

The (use of the) above statement is by far the most innovative part of the analysis of
Arora, Rao and Vazirani, so it is worth developing an intuitive feeling for its meaning.

Let’s say that we are interested in the distribution of pmax := maxj=2,...,n Yj − Y1.
We know that the random variables Yj − Y1 are Gaussians of mean 0 and standard
deviation at most

√
dmax, but it is impossible to say anything about, say, the average

value or the median value of pmax without knowing something about the correlation
of the random variables Yj − Y1.

Interestingly, the above Corollary says something about the concentration of pmax

without any additional information. The corollary says that, for example, the first
percentile of pmax and the 99-th percentile of pmax differ by at most O(

√
dmax), and

that we have a concentration result of the form

P[|pmax −median(pmax)| > t ·
√
dmax] ≤ e−Ω(t2)

which is a highly non-trivial statement for any configuration of xi for which pmax >>√
dmax.

2 Reworking the Assumption

Lemma 4 Under the assumptions of Lemma 1, there is a fixed set C ⊆ [n], |C| ≥
c′

10
n, and a set Mg of disjoint pairs {i, j}, dependent on g, such that, for every g and

for every pair {i, j} ∈Mg we have

d(i, j) ≤ `

and
|Yi − Yj| ≥ σ

and for all i ∈ C we have

P[∃j ∈ C. {i, j} ∈Mg] ≥ c′

20

Proof: Let Mg be the set of disjoint pairs promised by the assumptions of Lemma
1. Construct a weighted graph G = ([n],W ), where the weight of the edge {i, j} is

P[{i, j} ∈ Mg]. The degree of every vertex is at most 1, and the sum of the degrees
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is twice the expectation of |M |, and so, by the assumptions of Lemma 1, it is at least
c′n/5.

Now, repeatedly delete from G all vertices of degree at most c′n/20, and all the
edges incident on them, until no such vertex remains. At the end we are left with a
(possibly empty!) graph in which all remaining vertices have degree at most c′n/20;
each deletion reduces the sum of the degree by at most c′/10, and so the residual
graph has total degree at least c′n/10, and hence at least c′n/10 vertices �

By the above Lemma, the following result implies Lemma 1 and hence the ARV Main
Lemma.

Lemma 5 Let d(·, ·) be a semi-metric over a set C such that d(u, v) ≤ 1 for all
u, v ∈ C, let {xv}v∈C be a collection of vectors in Rm, such that d(i, j) := ||xu−xv||2
is a semimetric, let g be a random Gaussian vector in Rm, define Yv := 〈g,xv〉, and
suppose that, for every g, we can define a set of disjoint pairs Mg such that, with
probability 1 over g,

∀{u, v} ∈Mg. |Yu − Yv| ≥ σ ∧ d(u, v) ≤ `

and
∀u ∈ C. P[∃v.{u, v} ∈Mg] ≥ ε

Then

` ≥ Ωε,σ

(
1√

log |C|

)

3 An Inductive Proof that Gives a Weaker Result

In this section we will prove a weaker lower bound on `, of the order of 1

(log |C|)
2
3

. We

will then show how to modify the proof to obtain the tight result.

We begin will the following definitions. We define the ball or radius r centered at u
as

B(u, r) := {v ∈ C. d(u, v) ≤ r}
We say that a point v ∈ C has the (p, r, δ)-Large-Projection-Property, or that it is
(p, r, δ)-LPP if

P
[

max
v∈B(u,r)

Yv − Yu ≥ p

]
≥ δ

Lemma 6 Under the assumptions of Lemma 5, there is a constant c4 > 0 (that

depends only on ε and σ) such that for all t ≤ c4 · 1√
`
, at least

(
ε
8

)t−1 · |C| elements of

C have the
(
tσ

2
, t`, 1− ε

4

)
Large Projection Property.
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Proof: We will prove the Lemma by induction on t. We call Ct the set of elements
of C that are

(
tσ

2
, t`, 1− ε

4

)
-LPP

Let M ′
g be the set of ordered pairs (u, v) such that {u, v} ∈ Mg and Yv > Yu, and

hence Yv − Yu ≥ σ. Because g and −g have the same distribution, we have that, for
every i ∈ C, there is probability ≥ ε/2 that there is a v such that (u, v) ∈M ′ (a fact
that we will use for the base case), and also probability ≥ ε/2 that there is a v such
that (v, u) ∈M (a fact that we will use in the inductive step).

For the base case t = 1, we have, by the above observations, that, for every u ∈ C

P
[

max
v∈B(u,`)

Yv − Yu ≥ σ

]
≥ ε

2

and, by concentration of measure

P

[
max

v∈B(u,`)
Yv − Yu ≥ σ − c3

√
log

8

ε2

√
`

]
≥ 1− ε

4

where we applied the concentration of measure result to B(u, `). We will choose c4

so that

c3

√
log

8

ε2

√
` ≤ σ

2
and so we have the base case.

For the inductive case, define the function F : Ct → C (which will be a random
variable dependent on g) such that F (v) is the lexicographically smallest w ∈ B(v, t`)
such that Yw − Yv ≥ σ if such a w exists, and F (v) = ⊥ otherwise. The definition of
Ct is that P[F (v) 6= ⊥] ≥ 1 − ε/4 for every v ∈ Ct, and the inductive assumption is
that |Ct| ≥ |C| · (ε/8)t−1 .

By a union bound, for every v ∈ Ct, there is probability at least ε/4 that there is
an u ∈ C such that (u, v) ∈ M ′

g and F (v) = w 6= ⊥. In this case, we will define
F ′(u) = w, otherwise F ′(u) = ⊥.

Note that the above definition is consistent, because M ′
g is a set of disjoint pairs, so

for every u there is at most one v that could be used to define F ′(u). We also note
that, if F ′(u) = w 6= ⊥, then

Yw − Yu ≥ (t+ 1) · σ
2

+
σ

2
∧ d(u,w) ≤ (t+ 1) · `

and ∑
u∈C

P[F ′(u) 6= ⊥] =
∑
v∈Ct

[F (v) 6= ⊥ ∧ ∃u.(u, v) ∈M ′
g] ≥ |Ct| ·

ε

4

Now we can use another averaging argument to say that there have to be at least
|Ct| · ε8 elements u of C such that

P[F ′(u) 6= ⊥] ≥ ε

8
· |Ct|
|C|
≥
( ε

8

)t
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Let us call Ct+1 the set of such element. As required, |Ct+1| ≥ |Ct| · ε8 ≥ |C| · (ε/8)t.

By applying concentration of measure, the fact that, for every u ∈ Ct+1 we have

P
[

max
w∈B(u,(t+1)·`)

Yw − Yu ≥ (t+ 1)
σ

2
+
σ

2

]
≥
( ε

8

)t
implies that, for every u ∈ Ct+1

P

[
max

w∈B(u,(t+1)·`)
Yw − Yu ≥ (t+ 1)

σ

2
+
σ

2
− c3

√
log

4 · 8t
εt+1

√
(t+ 1) · `

]
≥ 1− ε

4

and the inductive step is proved, provided

σ

2
≥ c3

√
(t+ 1) · log

8

ε

√
(t+ 1) · `

which is true when

t+ 1 ≤ σ

2c3

√
log 8/ε

· 1√
`

which proves the lemma if we choose c4 = σ

2c3
√

log 8/ε
. �

Applying the previous lemma with t = c4/
√
`, we have that, with probability Ω(1),

there is a pair u, v in C such that

Yv − Yu ≥ Ω(1/
√
`)

and
d(u, v) ≤ O(

√
`)

but we also know that, with 1− o(1) probability, for all pairs i, j in C,

|Yv − Yu|2 ≤ O(log |C|) · d(i, j)

and so
1

`
≤ O(log |C|)

√
`

implying

` ≥ Ω

(
1

(log |C|)2/3

)
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4 The Tight Bound

In the result proved in the previous section, we need σ
2
, which is a constant, to be

bigger than the loss incurred in the application of concentration of measure, which
is of the order of t

√
`. A factor of

√
t` simply comes from the distances between the

points that we are considering; an additional factor of
√
t comes from the fact that

we need to push up the probability from a bound that is exponentially small in t.

The reason for such a poor probability bound is the averaging argument: each element
of Ct has probability Ω(1) of being the “middle point” of the construction, so that
the sum over the elements h of C of the probability that h has F ′(h) 6= ⊥ adds up
to Ω(|Ct|); such overall probability, however, could be spread out over all of C, with
each element of C getting a very low probability of the order of |Ct|/|C|, which is
exponentially small in t.

Not all elements of C, however, can be a h for which F ′(h) 6= ⊥; this is only possible
for elements h that are within distance ` from Ct. If the set Γ`(Ct) := {h : ∃i ∈
Ct : d(i, h) ≤ `} has cardinality of the same order of Ct, then we only lose a constant
factor in the probability, and we do not pay the extra

√
t term in the application of

concentration of measure. But what do we do if Γ`(Ct) is much bigger than Ct? In
that case we may replace Ct and Γ`(Ct) and have similar properties.

Lemma 7 Under the assumptions of Lemma 5, if S ⊆ C is a set of points such that
for every v ∈ S

P
[

max
w∈B(v,d)

Yw − Yv ≥ p

]
≥ ε

then, for every distance D, every k > 0, and every u ∈ ΓD(S)

P
[

max
w∈B(u,d+D)

Yw − Yu ≥ p−
√
D · k

]
≥ ε− e−k2/2

That is, if all the elements of S are (p, d, ε)-LPP, then all the elements of ΓD(S) are
(p− k

√
D, d+D, ε− e−k2/2)-LPP.

Proof: If u ∈ ΓD(S), then there is v ∈ S such that d(u, v) ≤ D, and, with probability
1− e−k2/2 we have Yu − Yv ≤

√
D · k. The claim follows from a union bound. �

Lemma 8 Under the assumptions of Lemma 5, there is a constant c5 > 0 (that
depends only on ε and σ) such that for all t ≤ c5 · 1

`
, there is a set Ct ⊆ C such that

|Ct| ≥ |C| · (ε/8)t−1, every element of Ct is
(
t · σ

4
,
(

2t+ log 8
ε

|Ct|
|C|

)
· `, 1− ε

4

)
-LPP,

and

|Γ`(Ct)| ≤
8

ε
|Ct|
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Proof: The base case t = 1 is already established in the proof of Lemma 6, and the
additional condition is trivially satisfied because C1 = C, and so Γ`(C1) = C1.

For the inductive step, we define F (·) and F ′(·) as in the proof of Lemma 6. We have
that if F ′(u) = w 6= ⊥, then

Yw − Yu ≥ t · σ
4

+ σ ,

d(u,w) ≤
(

2t+ log 8
ε

|Ct|
|C|

)
· `+ ` ,

and ∑
u∈C

P[F ′(u) 6= ⊥] =
∑
v∈Ct

[F (v) 6= ⊥ ∧ ∃u.(u, v) ∈M ′
g] ≥ |Ct| ·

ε

4

Now we can use another averaging argument to say that there have to be at least
|Ct| · ε8 elements u of C such that

P[F ′(u) 6= ⊥] ≥ ε

8
· |Ct|
|Γ`(Ct)|

≥
(
ε2

64

)
Let us call C

(0)
t+1 the set of such elements.

Define C
(1)
t+1 := Γ`(C

(0)
t+1), C

(2)
t+1 := Γ`(C

(1)
t+1), and so on, and let k be the first time such

that |C(k+1)
t+1 | ≤ 8

ε
|C(k)

t+1|. We will define Ct+1 := C
(k)
t+1. Note that

|Ct+1| ≥
(

8

ε

)k
· |C(0)

t+1| ≥
(

8

ε

)k−1

· |Ct| ≥
(

8

ε

)k−1−t

|C|

which implies that k ≤ t+ 1.

We have |Ct+1| ≥ |C(0)
t+1| ≥ ε

8
|Ct| so we satisfy the inductive claim about the size of

Ct. Regarding the other properties, we note that Ct+1 ⊆ Γk`(C
(0)
t+1), and that every

element of C
(0)
t+1 is (

t
σ

4
+ σ,

(
2t+ 1 + log 8

ε

|Ct|
|C|

)
· `, ε

2

64

)
− LPP

∀i ∈ C(0)
t+1. P

[
∃j ∈ C. Yj − Yi ≥ t

σ

4
+ σ ∧ d(i, j) ≤

(
2t+ 1 + log 8

ε

|Ct|
|C|

)
· `
]
≥ ε2

64

so we also have that every element of Ct+1 is(
t
σ

4
+
σ

2
,

(
2t+ 1 + k + log 8

ε

|Ct|
|C|

)
· `, ε

2

128

)
− LPP
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provided

σ

2
≥
√

2 log
128

ε2
· k`

which we can satisfy with an appropriate choice of c4, recalling that k ≤ t+ 1.

Then we apply concentration of measure to deduce that every element of Ct+1 is(
t
σ

4
+
σ

4
,

(
2t+ 1 + k + log 8

ε

|Ct|
|C|

)
· `, 1− ε

4

)
− LPP

provided that

σ

4
≥ c3

√
log

512

ε3
·
(

2t+ 1 + k + log 8
ε

|Ct|
|C|

)
· `

which we can again satisfy with an appropriate choice of c4, because k ≤ t + 1 and
log 8

ε

|Ct|
|C| is smaller than or equal to zero.

Finally,

2t+ 1 + k + log 8
ε

|Ct|
|C|
≤ 2t+ 2 + log 8

ε

|Ct+1|
|C|

because, as we established above,

|Ct+1| ≥
(

8

ε

)k−1

|Ct|

�

By applying Lemma 8 with t = Ω(1/`), we find that there is Ω(1) probability that
there are i, j in C such that

Yj − Yi ≥ Ω(1/`)

d(i, j) ≤ 1

|Yi − Yj|2 ≤ O(log n) · d(i, j)

which, together, imply

` ≥ Ω

(
1√

log n

)
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