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Lecture 11: ARV

In which we introduce semi-definite programming and a semi-definite programming
relaxation of sparsest cut, and we reduce its analysis to a key lemma that we will
prove in the next lecture(s)

1 The Goemans-Linial Relaxation

Recall that, for two undirected graphs G,H, the sparsest cut problem is to optimize

sc(G,H) := min
S⊆V

∑
{u,v}∈EG

|1S(u)− 1S(v)|∑
{u,v}∈EH

|1S(u)− 1S(v)|

and the Leighton-Rao relaxation is obtained by noting that if we define d(u, v) :=
|1S(u)−1S(v)| then d(·, ·) is a semimetric over V , meaning that the following quantity
is a relaxation of (G,H):

LR(G,H) = min
d : V × V → R
d semimetric

∑
{u,v}∈EG

d(u, v)∑
{u,v}∈EH

d(u, v)

If G is r-regular, H is a clique, and 0 = λ1 ≤ λ2 ≤ · · · ≥ λn are the eigenvalues of
the normalized Laplacian of G, then

r

n
λ2 = min

f :V→R

∑
{u,v}∈EG

|f(u)− f(v)|2∑
{u,v}∈EKn

|f(u)− f(v)|2
(1)

which is a relaxation of sc(G,Kn), because, for every S, every u and every v, |1S(u)−
1S(v)| = |1S(u)− 1S(v)|2.
We note that if we further relax (1) by allowing V to be mapped into a higher
dimension space Rm instead of R, and we replace | · − · | by || · − · ||2, the optimum
remains the same.
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Fact 1

λ2 = inf
m,F :V→Rm

∑
{u,v}∈EG

||F (u)− F (v)||2∑
{u,v}∈EKn

||F (u)− F (v)||2

Proof: For every F : V → Rm, if we write F (v) = (f1(v), . . . , fn(v)), we have∑
{u,v}∈EG

||F (u)− F (v)||2∑
{u,v}∈EKn

||F (u)− F (v)||2

=

∑
i

∑
{u,v}∈EG

(fi(u)− fi(v))2∑
i

∑
{u,v}∈EKn

(fi(u)− fi(v))2

≥ min
i=1,...,m

∑
{u,v}∈EG

(fi(u)− fi(v))2∑
{u,v}∈EKn

(fi(u)− fi(v))2

≥ λ2

�

The above observations give the following comparison between the Leighton-Rao re-
laxation and the spectral relaxation: both are obtained by replacing |1S(u) − 1S(v)|
with a “distance function” d(u, v); in the Leighton-Rao relaxation, d(u, v) is con-
strained to satisfy the triangle inequality; in the spectral relaxation, d(u, v) is con-
strained to be the square of the Euclidean distance between F (u) and F (v) for some
mapping F : V → Rm.

The Arora-Rao-Vazirani relaxation is obtained by enforcing both conditions, that is,
by considering distance functions d(u, v) that satisfy the triangle inequality and can
be realized of ||F (u)− F (v)||2 for some mapping F : V → Rm.

Definition 2 A semimetric d : V → V → R is called of negative type if there is a
dimension m and a mapping F : V → Rm such that d(u, v) = ||F (u) − F (v)||2 for
every u, v ∈ V .

With the above definition, we can formulate the Goemans-Linial relaxation as

ARV (G,H) := min
d : V × V → R

d semimetric of negative type

∑
{u,v}∈EG

d(u, v)∑
{u,v}∈EH

d(u, v)
(2)

Remark 3 The relaxation (2) was first proposed by Goemans and Linial. Arora,
Rao and Vazirani were the first to prove that it achieves an approximation guarantee
which is better than the approximation guarantee of the Leighton-Rao relaxation.
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We have, by definition,

sc(G,H) ≤ ARV (G,H) ≤ LR(G,H)

and, when H is a clique and G is r-regular,

sc(G,Kn) ≤ ARV (G,Kn) ≤ r

n
λ2(G)

and so the approximation results that we have proved for λ2 and LR apply to ARV .
For every graphs G and H:

ARV (G,H) ≤ O(log |V |) · sc(G,H)

and for every r-regular graph G

n

r
ARV (G,Kn) ≤

√
8
n

r
· sc(G,Kn)

Interestingly, known examples of graphs for which LR and λ2 give poor approximation
are complementary. When H is a clique, if G is a cycle, then r

n
λ2 is a poor approxi-

mation of sc(G,Kn), but LR(G,Kn) is a good approximation of sc(G,Kn); if G is a
constant-degree expander then LR(G,Kn) is a poor approximation of sc(G,Kn), but
r
n
λ2 is a good approximation.

When Goemans and Linial (separately) proposed to study the relaxation (2), they
conjectured that it would always provide a constant-factor approximation of sc(G,H).
Unfortunately, the conjecture turned out to be false, but Arora, Rao and Vazirani
were able to prove that (2) does provide a strictly better approximation than the
Leighton-Rao relaxation. In the next lectures, we will present parts of the proof of
the following results.

Theorem 4 There is a constant c such that, for every graph G = (V,E),

sc(G,Kn) ≤ c ·
√

log |V | · ARV (G,Kn)

Theorem 5 There is a constant c such that, for every graphs G = (V,EG), H =
(V,EH),

sc(G,H) ≤ c ·
√

log |V | · log log |V | · ARV (G,H)

Theorem 6 There is a constant c and an infinite family of graphs Gn = (Vn, En)
such that

sc(Gn, Kn) ≥ c · log log |Vn| · ARV (Gn, Kn)
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Theorem 7 There are families of graphs Gn = (Vn, EGn) and Hn(Vn, EHn) such
that, for every ε > 0 and every sufficiently larger n,

ARV (Gn, Kn) ≥ (log |V |)
1
2
−ε · sc(Gn, Kn)

2 Polynomial Time Solvability

In this section we show that the Ellipsoid algorithm can compute ARV (G,H) in
polynomial time.

Definition 8 If C ⊆ Rm is a set, then a separation oracle for C is a procedure that,
on input x ∈ Rm,

• If x ∈ C, outputs “yes”

• If x 6∈ C, outputs coefficients a1, . . . , am, b such that∑
i

xiai < b

but, for every z ∈ C, ∑
i

ziai ≥ b

Note that a set can have a separation oracle only if it is convex. Under certain
additional mild conditions, if C has a polynomial time computable separation oracle,
then the optimization problem

minimize
∑

i c
Tx

subject to
Ax ≥ b
x ∈ C

is solvable in polynomial time using the Ellipsoid Algorithm.

It remains to see how to put the Arora-Rao-Vazirani relaxation into the above form.

Recall that a matrix X ∈ Rn×n is positive semidefinite if all its eigenvalues are nonneg-
ative. We will use the set of all n×n positive semidefinite matrices as our set C (think-
ing of them as n2-dimensional vectors). If we think of two matrices M,M ′ ∈ Rn×n as
n2-dimensional vectors, then their “inner product” is

M •M ′ :=
∑
i,j

Mi,j ·M ′
i,j
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Lemma 9 The set of n × n positive semidefinite matrices has a separation oracle
computable in time polynomial in n.

Proof: Given a symmetric matrix X, its smallest eigenvalue is

min
z∈Rn, ||z||=1

zTXz

the vector achieving the minimum is a corresponding eigenvector, and both the small-
est eigenvalue and the corresponding eigenvector can be computed in polynomial time.

If we find that the smallest eigenvalue of X is non-negative, then we answer “yes.”
Otherwise, if z is an eigenvector of the smallest eigenvalue we output the matrix
A = zTz. We see that we have

A •X = zTXz < 0

but that, for every positive semidefinite matrix M , we have

A •M = zTMz ≥ 0

�

This implies that any optimization problem of the following form can be solved in
polynomial time

minimize C •X
subject to

A1 •X ≥ b1
· · ·
Am •X ≥ bm
X � 0

(3)

where C,A1, . . . , Am are square matrices of coefficients, b1, . . . , bm are scalars, and X
is a square matrix of variables. An optimization problem like the one above is called
a semidefinite program.

It remains to see how to cast the Arora-Rao-Vazirani relaxation as a semidefinite
program.

Lemma 10 For a symmetric matrix M ∈ Rn×n, the following properties are equiva-
lent:

1. M is positive semidefinite;
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2. there are vectors x1, . . . ,xn ∈ Rd such that, for all i, j, Mi,j = 〈xi,xj〉;

3. for every vector z ∈ Rn, zTMz ≥ 0

Proof: That (1) and (3) are equivalent follows from the characterization of the
smallest eigenvalue of M as the minimum of zTMz over all unit vectors z.

To see that (2) ⇒ (3), suppose that vectors x1, . . . ,xn exist as asserted in (2), and
let X be the matrix whose columns are the vectors x1, . . . ,xn, so that XT ·X = M .
Take any vector z, and see that

zTMz = zTXTXz = ||Xz||2 ≥ 0

Finally, to see that (1) ⇒ (2), let λ1, . . . , λn be the eigenvalues of M with multiplici-
ties, and let v1, . . . ,vn be a corresponding orthonormal set of eigenvectors. Then

M =
∑
i

λkvkv
T
k

that is,

Mi,j =
∑
k

λkvk(i)vk(j) = 〈xi,xj〉

if we define x1, . . . ,xn as the vectors such that xi(k) :=
√
λkvk(i). �

This means that the generic semidefinite program (4) can be rewritten as an opti-
mization problem in which the variables are the vectors x1, . . . ,xn as in part (2) of
the above lemma.

minimize
∑

i,j Ci,j〈xi,xj〉
subject to ∑

i,j A
1
i,j〈xi,xj〉 ≥ b1

· · ·∑
i,j A

m
i,j〈xi,xj〉 ≥ bm

xi ∈ Rm ∀i ∈ {1, . . . , n}

(4)

where the dimension m is itself a variable (although one could fix it, without loss of
generality, to be equal to n). In this view, a semidefinite program is an optimization
problem in which we wish to select n vectors such that their pairwise inner products
satisfy certain linear inequalities, while optimizing a cost function that is linear in
their pairwise inner product.

The square of the Euclidean distance between two vectors is a linear function of inner
products
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||x− y||2 = 〈x− y,x− y〉 = 〈x,x〉 − 2〈x,y〉+ 〈y,y〉

and so, in a semidefinite program, we can include expressions that are linear in the
pairwise squared distances (or squared norms) of the vectors. The ARV relaxation
can be written as follows

minimize
∑
{u,v}∈EG

||xu − xv||2

subject to ∑
{u,v}∈EH

||xu − xv||2 = 1

||xu − xv||2 ≤ ||xu − xw||2 + ||xw − xv||2 ∀u, v, w ∈ V
xu ∈ Rd ∀u ∈ V

and so it is a semidefinite program, and it can be solved in polynomial time.

Remark 11 Our discussion of polynomial time solvability glossed over important is-
sues about numerical precision. To run the Ellipsoid Algorithm one needs, besides
the separation oracle, to be given a ball that is entirely contained in the set of feasible
solutions and a ball that entirely contains the set of feasible solutions, and the run-
ning time of the algorithm is polynomial in the size of the input, polylogarithmic in
the ratio of the volumes of the two balls, and polylogarithmic in the desired amount
of precision. At the end, one doesn’t get an optimal solution, which might not have
a finite-precision exact representation, but an approximation within the desired pre-
cision. The algorithm is able to tolerate a bounded amount of imprecision in the
separation oracle, which is an important feature because we do not have exact algo-
rithms to compute eigenvalues and eigenvectors (the entries in the eigenvector might
not have a finite-precision representation).

The Ellipsoid algorithm is typically not a practical algorithm. Algorithms based on
the interior point method have been adapted to semidefinite programming, and run
both in worst-case polynomial time and in reasonable time in practice.

Arora and Kale have developed an Õ((|V |+ |E|)2/εO(1)) time algorithm to solve the
ARV relaxation within a multiplicative error (1 + ε). The dependence on the error is
worse than that of generic algorithms, which achieve polylogarithmic dependency, but
this is not a problem in this application, because we are going to lose an O(

√
log |V |)

factor in the rounding, so an extra constant factor coming from an approximate
solution of the relaxation is a low-order consideration.

3 Rounding when H is a clique

Given the equivalence between the sparsest cut problem and the “L1 relaxation” of
sparsest cut, it will be enough to prove the following result.
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Theorem 12 (Rounding of ARV) Let G = (V,E) be a graph, and {xv}v∈V be a
feasible solution of the relaxation ARV (G,Kn).

Then there is a mapping f : V → R such that∑
{u,v}∈E |f(u)− f(v)|∑
{u,v} |f(u)− f(v)|

≤ O(
√

log |V |) ·
∑
{u,v}∈E ||xu − xv||2∑
{u,v} ||xu − xv||2

As in the rounding of the Leighton-Rao relaxation via Bourgain’s theorem, we will
identify a set S ⊆ V , and define

fS(v) := min
s∈S
||xs − xv||2 (5)

Recall that, as we saw in the proof of Bourgain’s embedding theorem, no matter how
we choose the set S we have

|fS(u)− fS(v)| ≤ ||xu − xv||2 (6)

where we are not using any facts about || ·−· ||2 other than the fact that, for solutions
of the ARV relaxation, it is a distance function that obeys the triangle inequality.

This means that, in order to prove the theorem, we just have to find a set S ⊆ V
such that

∑
u,v

|fS(u)− fS(v)| ≥ 1

O(
√

log |V |)
·
∑
u,v

||xu − xv||2 (7)

and this is a considerable simplification because the above expression is completely
independent of the graph! The remaining problem is purely one about geometry.

Recall that if we have a set of vectors {xv}v∈V such that the distance function
d(u, v) := ||xu − xv||2 satisfies the triangle inequality, then we say that d(·, ·) is a
(semi-)metric of negative type.

After these preliminaries observations, our goal is to prove the following theorem.

Theorem 13 (Rounding of ARV – Revisited) If d(·, ·) is a semimetric of neg-
ative type over a set V , then there is a set S such that if we define

fS(v) := min
s∈S
{d(s, v)}

we have ∑
u,v

|fS(u)− fS(v)| ≥ 1

O(
√

log |V |)
·
∑
u,v

d(u, v)
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Furthermore, the set S can be found in randomized polynomial time with high proba-
bility given a set of vector {xv}v∈V such that d(u, v) = ||xu − xv||2.

Since the statement is scale-invariant, we can restrict ourselves, with no loss of gen-
erality, to the case

∑
u,v d(u, v) = |V |2.

Remark 14 Let us discuss some intuition before continuing with the proof.

As our experience proving Bourgain’s embedding theorem shows us, it is rather difficult
to pick sets such that |fS(u) − fS(v)| is not much smaller than d(u, v). Here we have
a somewhat simpler case to solve because we are not trying to preserve all distances,
but only the average pairwise distance. A simple observation is that if we find a set S
which contains Ω(|V |) elements and such that Ω(|V |) elements of V are at distance Ω(δ)
from S, then we immediately get

∑
u,v |fS(u)− fS(v)| ≥ Ω(δ|V |2), because there will be

Ω(|V |2) pairs u, v such that fS(u) = 0 and fS(v) ≥ δ. In particular, if we could find such
a set with δ = 1/O(

√
log |V |) then we would be done. Unfortunately this is too much to

ask for in general, because we always have |fS(u)− fS(v)| ≤ d(u, v), which means that
if we want

∑
u,v |fS(u)− fS(v)| to have Ω(V 2) noticeably large terms we must also have

that d(u, v) is noticeably large for Ω(|V |2) pairs of points, which is not always true.

There is, however, the following argument, which goes back to Leighton and Rao: either
there are Ω(|V |) points concentrated in a ball whose radius is a quarter (say) of the
average pairwise distance, and then we can use that ball to get an `1 mapping with only
constant error; or there are Ω(|V |) points in a ball of radius twice the average pairwise
distance, such that the pairwise distances of the points in the ball account for a constant
fraction of all pairwise distances. In particular, the sum of pairwise distances includes
Ω(|V |2) terms which are Ω(1).

After we do this reduction and some scaling, we are left with the task of proving the
following theorem: suppose we are given an n-point negative type metric in which the
points are contained in a ball of radius 1 and are such that the sum of pairwise distances
is Ω(n2); then there is a subset S of size Ω(n) such that there are Ω(n) points whose
distance from the set is 1/O(

√
log n). This theorem is the main result of the Arora-Rao-

Vazirani paper. (Strictly speaking, this form of the theorem was proved later by Lee –
Arora, Rao and Vazirani had a slightly weaker formulation.)

We begin by considering the case in which a constant fraction of the points are
concentrated in a small ball.

Definition 15 (Ball) For a point z ∈ V and a radius r > 0, the ball of radius r and
center z is the set

B(z, r) := {v : d(z, v) ≤ r}
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Lemma 16 For every vertex z, if we define S := B(z, 1/4), then

∑
u,v

|fS(u)− fS(v)| ≥ |S|
2|V |

∑
u,v

d(u, v)

Proof: Our first calculation is to show that the typical value of fS(u) is rather large.
We note that for every two vertices u and v, if we call a a closest vertex in S to u,
and b a closest vertex to v in S, we have

d(u, v) ≤ d(u, a) + d(a, z) + d(z, b) + d(b, v)

≤ fS(u) + fS(v) +
1

2

and so

|V |2 =
∑
u,v

d(u, v) ≤ 2|V | ·
∑
v

fS(v) +
|V |2

2

that is,

∑
v

fS(v) ≥ |V |
2

Now we can get a lower bound to the sum of `1 distances given by the embedding
fS(·).

∑
u,v

|fS(u)− fS(v)|

≥
∑

u∈S,v∈V

|fS(v)|

= |S|
∑
v

fS(v)

≥ 1

2
|S| · |V |

�

This means that if there is a vertex z such that |B(z, 1/4)| = Ω(|V |), or even
|B(z, 1/4)| = Ω(|V |/

√
log |V |), then we are done.

Otherwise, we will find a set of Ω(|V |) vertices such that their average pairwise dis-
tances are within a constant factor of their maximum pairwise distances, and then we
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will work on finding an embedding for such a set of points. (The condition that the
average distance is a constant fraction of the maximal distance will be very helpful
in subsequent calculations.)

Lemma 17 Suppose that for every vertex z we have |B(z, 1/4)| ≤ |V |/4. Then there
is a vertex w such that, if we set S = B(w, 2), we have

• |S| ≥ 1
2
· |V |

•
∑

u,v∈S d(u, v) ≥ 1
8
|S|2

Proof: Let w be a vertex that maximizes |B(w, 2)|; then |B(w, 2)| ≥ |V |/2, because
if we had |B(u, 2)| < |V |/2 for every vertex u, then we would have

∑
u,v

d(u, v) >
∑
u

2 · (|V −B(u, 2)|) > |V |2

Regarding the sum of pairwise distances of elements of S, we have∑
u,v∈S

d(u, v) >
∑
u∈S

1

4
(|S −B(u, 1/4)|) ≥ |S| · 1

4
· |S|

2

�

The proof of the main theorem now reduces to proving the following geometric fact.

Lemma 18 (ARV Main Lemma) Let d be a negative-type metric over a set V
such that the points are contained in a unit ball and have constant average distance,
that is,

• there is a vertex z such that d(v, z) ≤ 1 for every v ∈ V

•
∑

u,v∈V d(u, v) ≥ c · |V |2

Then there are sets S, T ⊆ V such that

• |S|, |T | ≥ Ω(|V |);

• for every u ∈ S and every v ∈ S, d(u, v) ≥ 1/O(
√

log |V |)

where the multiplicative factors hidden in the O(·) and Ω(·) notations depend only on
c.
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Indeed, applying the ARV Main Lemma to 1
2
d(u, v) tells us that there are subsets

S, T of B(z, 2), both of size Ω(|B(z, 2)|) = Ω(n) such that d(u, v) ≥ 1/O(
√

log n) for
every u ∈ S and v ∈ T . If we consider the Frechet embedding fS, we have

∑
{u,v}

|fS(u)− fS(v)| ≥
∑

u∈S,v∈T

|fS(u)− fS(v)|

≥ |S| · |T | · 1

O(
√

log n)

≥ n2 · 1

O(
√

log n)

=
1

O(
√

log n)
·
∑
{u,v}

d(u, v)

It remains the prove the ARV Main Lemma.
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