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Lecture 9: The Sparsest Cut Problem

In which we introduce the sparsest cut problem and the Leighton-Rao relaxation.

1 The Uniform Sparsest Cut problem, Edge Ex-

pansion and λ2

Let G = (V,E) be an undirected graph with n := |V | vertices.

We define the uniform sparsity of a cut (S, V − S) as

uscG(S) :=
E(S, V − S)

|S| · |V − S|

(we will omit the subscript when clear from the context) and the uniform sparsest
cut of a graph is

usc(G) := min
S

uscG(S)

In d-regular graphs, approximating the uniform sparsest cut is equivalent (up to a
factor of 2 in the approximation) to approximating the edge expansion, because, for
every cut (S, V − S), we have

φ(S, V − S) =
E(S, V − S)

d ·min{|S|, |V − S|}
and, noting that, for every, S,

1

n
|S| · |V − S| ≤ min{|S|, |V − S|} ≤ 2

n
|S| · |V − S|

we have, for every S,

φ(S, V − S) ≤ n

d
· usc(S) ≤ 2φ(S, V − S)
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and so
φ(G) ≤ n

d
· usc(G) ≤ 2φ(G)

It will be instructive to see that, in d-regular graphs, λ2 is a relaxation of n
d
usc(G),

a fact that gives an alternative proof of the easy direction λ2 ≤ 2φ(G) of Cheeger’s
inequalities.

If G is d-regular, then λ2 satisfies

λ2 = min
x∈Rn−{0},x⊥1

∑
{u,v}∈E(xu − xv)2∑

v dx
2
v

= min
x∈Rn−{0},x⊥1

n

d
·
∑
{u,v}∈E(xu − xv)2∑
{u,v}(xu − xv)2

= min
x∈Rn−{0}

n

d
·
∑
{u,v}∈E(xu − xv)2∑
{u,v}(xu − xv)2

where the first identity above comes from the fact that

∑
{u,v}

(xu − xv)2 =
1

2

∑
(u,v)∈V 2

(xu − xv)2 = n
∑
v

x2v −
∑
u,v

xuxv

= n
∑
v

x2v −

(∑
v

xv

)2

= n
∑
v

x2v − 〈x,1〉2

= n
∑
v

x2v

and the second identity follows by noticing that the cost function is invariant by
addition of a multiple of 1, and so optimizing over all non-zero vectors gives the same
result as optimizing over all vectors orthogonal to 1.

On the other hand, the uniform sparsest cut problem can be formulated as

usc(G) = min
x∈{0,1}n−{0,1}

∑
{u,v}∈E(xu − xv)2∑
{u,v}(xu − xv)2

(because the square of a number in {−1, 0, 1} is the same as its absolute value) and
we see that λ2 can be considered a continuous relaxation of n

d
usc(G).
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2 The Non-Uniform Sparsest Cut Problem

In the non-uniform sparsest cut problem, we are given two graphs G = (V,EG) and
H = (V,EH), over the same set of vertices; the non-uniform sparsity of a cut (S, V −S)
is defined as

scG,H(S) :=
EG(S, V − S)

EH(S, V − S)

and the non-uniform sparsest cut problem is the optimization problem

sc(G,H) := min
S

scG,H(S)

Note that the non-uniform sparsest cut problem generalizes the sparsest cut problem
(consider the case in which H is a clique).

If H is the graph that contains the single edge {s, t}, then sc(G,H) is the undirected
min-st-cut problem, in which we want to find the cut that separates two vertices s
and t and that minimizes the number of crossing edges.

3 The Leighton-Rao Relaxation

We can write the non-uniform sparsity of a set as

scG,H(S) =

∑
{u,v}∈EG

|1S(u)− 1S(v)|∑
{u,v}∈EH

|1S(u)− 1S(v)|

The observation that led us to see λ2 as the optimum of a continuous relaxation of
n
d
scG,Kn was to observe that |1S(u) − 1S(v)| = |1S(u) − 1S(v)|2, and then relax the

problem by allowing arbitrary functions x : V → R instead of indicator functions
1S : V → {0, 1}.
The Leighton-Rao relaxation of sparsest cut is obtained using, instead, the following
observation: if, for a set S, we define dS(u, v) := |1S(i)− 1S(j)|, then dS(·, ·) defines
a semi-metric over the set V , because dS is symmetric, dS(v, v) = 0, and the triangle
inequality holds. So we could think about allowing arbitrary semi-metrics in the
expression for sc, and define

LR(G,H) := min
d : V × V → R
d semi-metric

∑
{u,v}∈EG

d(u, v)∑
{u,v}∈EH

d(u, v)
(1)
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This might seem like such a broad relaxation that there could be graphs on which
LR(G,H) bears no connection to sc(G,H). Instead, we will prove the fairly good
estimate

LR(G,H) ≤ sc(G,H) ≤ O(log |V |) · LR(G,H) (2)

The value LR(G,H) and an optimal d(·, ·) can be computed in polynomial time by
solving the following linear program

minimize
∑
{u,v}∈EG

du,v
subject to ∑

{u,v}∈EH
du,v = 1

du,v ≤ du,z + dz,v ∀u, v, z ∈ V
du,v ≥ 0 ∀u, v ∈ V

(3)

that has a variable du,v for every unordered pair of distinct vertices {u, v}. Clearly,
every solution to the linear program (3) is also a solution to the right-hand side of
the definition (1) of the Leighton-Rao parameter, with the same cost. Also every
semi-metric can be normalized so that

∑
{u,v}∈EH

d(u, v) = 1 by multiplying every
distance by a fixed constant, and the normalization does not change the value of the
right-hand side of (1); after the normalization, the semimetric is a feasible solution
to the linear program (3), with the same cost.

4 An L1 Relaxation of Sparsest Cut

In the Leighton-Rao relaxation, we relax distance functions of the form d(i, j) =
|1S(i) − 1S(j)| to completely arbitrary distance functions. Let us consider an inter-
mediate relaxation, in which we allow distance functions that can be realized by an
embedding of the vertices in an `1 space.

Recall that, for a vector x ∈ Rn, its `1 norm is defined as ||x||1 :=
∑

i |xi|, and that
this norm makes Rn into a metric space with the `1 distance function

||x− y||1 =
∑
i

|xi − yi|

The distance function d(u, v) = |1S(u) − 1S(v)| is an example of a distance function
that can be realized by mapping each vertex to a real vector, and then defining the
distance between two vertices as the `1 norm of the respective vectors. Of course it
is an extremely restrictive special case, in which the dimension of the vectors is one,
and in which every vertex is actually mapping to either zero or one. Let us consider
the relaxation of sparsest cut to arbitrary `1 mappings, and define
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L1sc(G,H) := inf
m,f :V→Rm

∑
{u,v}∈EG

||f(u)− f(v)||1∑
{u,v}∈EH

||f(u)− f(v)||1

This may seem like another very broad relaxation of sparsest cut, whose optimum
might be much smaller than the sparsest cut optimum. The following theorem shows
that this is not the case.

Theorem 1 For every graphs G,H, sc(G,H) = L1sc(G,H).

Furthermore, there is a polynomial time algorithm that, given a mapping f : V → Rm,
finds a cut S such that∑

{u,v}∈EG
|1S(u)− 1S(v)|∑

{u,v}∈EH
|1S(u)− 1S(v)|

≤
∑
{u,v}∈EG

||f(u)− f(v)||1∑
{u,v}∈EH

||f(u)− f(v)||1
(4)

Proof: We use ideas that have already come up in the proof the difficult direction
of Cheeger’s inequality. First, recall that for every nonnegative reals a1, . . . , am and
positive reals b1, . . . , bm we have

a1 + · · · am
b1 + · · · bm

≥ min
i

ai
bi

(5)

as can be seen by noting that

∑
j

aj =
∑
j

bj ·
aj
bj
≥
(

min
i

ai
bi

)
·
∑
j

bj

Let fi(v) be the i-th coordinate of the vector f(v), thus f(v) = (f1(v), . . . , fm(v)).
Then we can decompose the right-hand side of (4) by coordinates, and write∑

{u,v}∈EG
||f(u)− f(v)||1∑

{u,v}∈EH
||f(u)− f(v)||1

=

∑
i

∑
{u,v}∈EG

|fi(u)− fi(v)|∑
i

∑
{u,v}∈EH

|fi(u)− fi(v)|

≥ min
i

∑
{u,v}∈EG

|fi(u)− fi(v)|∑
{u,v}∈EH

|fi(u)− fi(v)|

This already shows that, in the definition of φ′, we can map, with no loss of generality,
to 1-dimensional `1 spaces.
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Let i∗ be the coordinate that achieves the minimum above. Because the cost function
is invariant under the shifts and scalings (that is, the cost of a function x → f(x) is
the same as the cost of x → af(x) + b for every two constants a 6= 0 and b) there
is a function g : V → R such that g has the same cost function as fi∗ and it has a
unit-length range maxv g(v)−minv g(v) = 1.

Let us now pick a threshold t uniformly at random from the interval [minv g(v),maxv g(v)],
and define the random variables

St := {v : g(v) ≤ t}

We observe that for every pairs of vertices u, v we have

E |1St(u)− 1St(v)| = |g(u)− g(v)|

and so we get ∑
{u,v}∈EG

||f(u)− f(v)||1∑
{u,v}∈EH

||f(u)− f(v)||1

≥
∑
{u,v}∈EG

|g(u)− g(v)|∑
{u,v}∈EH

|g(u)− g(v)|

=
E
∑
{u,v}∈EG

|1St(u)− 1St(v)|
E
∑
{u,v}∈EH

|1St(u)− 1St(v)|

Finally, by an application of (5), we see that there must be a set S among the possible
values of St such that (4) holds.

Notice that the proof was completely constructive: we simply took the coordinate fi∗
of f with the lowest cost function, and then the “threshold cut” given by fi∗ with the
smallest sparsity. �

5 A Theorem of Bourgain

We will derive our main result (2) from the L1 “rounding” process of the previous
section, and from the following theorem of Bourgain (the efficiency considerations are
due to Linial, London and Rabinovich).

Theorem 2 (Bourgain) Let d : V × V → R be a semimetric defined over a finite
set V . Then there exists a mapping f : V → Rm such that, for every two elements
u, v ∈ V ,
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||f(u)− f(v)||1 ≤ d(u, v) ≤ ||f(u)− f(v)||1 · c · log |V |

where c is an absolute constant. Given d, the mapping f can be found with high
probability in randomized polynomial time in |V |.

To see that the above theorem of Bourgain implies (2), consider a graph G, and let
d be the optimal solution of the Leighton-Rao relaxation of the sparsest cut problem
on G, and let f : V → R be a mapping as in Bourgain’s theorem applied to d. Then

LR(G,H) =

∑
{u,v}∈EG

d(u, v)∑
{u,v}∈EH

d(u, v)

≥
∑
{u,v}∈EG

||f(u)− f(v)||1
c · log |V | ·

∑
{u,v}∈EH

||f(u)− f(v)||1

≥ 1

c · log |V |
· sc(G,H)
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