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Lecture 8: Spectral Algorithms Wrap-up

In which we talk about even more generalizations of Cheeger’s inequalities, and we
analyze the power method to find approximate eigenvectors, thus having a complete
description of a polynomial-time approximation algorithm for sparsest cut

1 Irregular Graphs

For simplicity, we proved our results on λ2 and λk for regular graphs. Those results
extend, essentially with the same proofs, to the case of irregular undirected graphs.
In an irregular graph G = (V,E), the notion that generalizes edge expansion is called
conductance. If dv is the degree of vertex v, then the conductance of set S of vertices
is

φ(S) :=
E(S, V − S)∑

v∈S dv

We will call the sum of the degrees of a set of vertices the volume of the set, and
denote it vol(S) :=

∑
v∈S dv. The conductance of the graph G is

φ(G) := min
S:vol(S)≤ 1

2
vol(V )

φ(S)

Higher-order conductance is defined as higher-order expansion, but with conductance
replacing expansion in the definition.

The Cheeger inequalities

λ2
2
≤ φ(G) ≤

√
2λ2

still hold, with the same proof. With some abuse of notation, we will call the following
quantity the Rayleigh quotient of x

RL(x) :=

∑
{u,v}∈E(xu − xv)2∑

v∈V dvx
2
v
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even if, technically, it is the Rayleigh quotient of D1/2x, where D is the diagonal
matrix of degrees.

We can also adapt the proof of the higher-order Cheeger inequality to show

λk
2
≤ φk(G) ≤ O(k3.5) ·

√
λk

2 More Cheeger-type Bounds

We proved that if (SF , V − SF ) is the cut found by Fiedler’s algorithm using the
eigenvector of λ2, then

φ(SF , V − SF ) ≤ 2
√
φ(G)

which is a good bound, although it usually underestimates the quality of the solutions
found in practice. (There are graphs, however, for which the above inequality is tight
within a constant factor.)

One case in which we can improve the analysis is when there are not too many
eigenvalues close to λ2

Theorem 1 There is a constant c such that, if (SF , V − SF ) is the cut obtained by
Fiedler’s algorithm using an eigenvector for λ2, then, for every k ≥ 2,

φ(SF , V − SF ) ≤ c · k · λ2√
λk

So we have

φ(SF , V − SF ) ≤ 2c · φ(G) ·min
k≥2

k√
λk

which is a better bound for families of graphs in which, for some k, λk >> k2λ2.

We will not have time to prove Theorem 1, but we will state the two main pieces of
its proof.

Lemma 2 Let x ∈ RV
≥0 be a non-negative vector. Then, for every k, there is a

non-negative vector y ∈ RV
≥0 whose entries take at most 2k distinct values and such

that

||x− y||2 ≤ RL(x)

λk
||x||2
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That is, if RL(x) >> λk, then there are 2k values such that most entries of x are
close to one of those 2k values.

Lemma 3 There is a constant c′ such that, for every non-negative vectors x ∈ RV
≥0

and y ∈ RV
≥0, if y is such that its entris contain only k distinct values, then there is

a threshold t > 0 such that

φ({v : xv ≥ t}) ≤ c′ · k ·
(
RL(x) +

√
RL(x) · ||x− y||

||x||

)
The above lemma should be compared to the fact, which was a major piece in the
proof of Cheeger’s inequality, that if x ∈ RV

≥0 is an arbitrary non-negative vector,
then there is a threshold t > 0 such that

φ({v : xv ≥ t}) ≤
√

2RL(x)

One obtains Theorem 1 in the following. Start from an eigenvector x of λ2 and, using
the first step in the proof of Cheeger’s inequality, obtain a vector x′ ∈ RV

≥0 with
non-negative entries such that RL(x′) ≤ RL(x) = λ2 and such that the support of x
contains at most |V |/2 vertices.

Use Lemma 2 to find a vector y with non-negative entries and with at most 2k distinct
values among its entries such that ||x′ − y||2 ≤ λ2

λk
||x′||2. Then use Lemma 3 and the

fact that λk ≤ 2 to conclude that there exists at t > 0 such that

φ({v : x′v ≥ t}) ≤ O(k) · λ2√
λk

The set {v : x′v ≥ t} contains at most |V |/2 vertices, it is one of the cuts considered
by Fiedler’s algorithm on input x.

Another property of graphs in which λk is large for small k is that they contain large
expanders as induced subgraphs.

Theorem 4 There is a constant c such that, for every graph G and every k, there
exists a partition of the vertices into ` ≤ k sets (S1 . . . , S`) such that, if we call Gi

the subgraph induced by the vertex set Si, we have

φGi
≥ c

λk
k2

Theorem 5 If φk+1 > (1+ε)φk, then there is a partition of the vertices into k subsets
(S1, . . . , Sk such that

∀i ∈ {1, . . . , k} : φGi
≥ Ω

( ε
k

)
· φk+1, φ(Si) ≤ kφk
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3 The Power Method

Earlier in this class, we showed that, if G = (V,E) is a d-regular graph, and L is
its normalized Laplacian matrix with eigenvalues 0 = λ1 ≤ λ2 . . . ≤ λn, given an
eigenvector of λ2, Fiedler’s algorithm finds, in nearly-linear time O(|E|+ |V | log |V |),
a cut (S, V − S) such that φ(S) ≤ 2

√
φ(G).

More generally, if, instead of being given an eigenvector x such that Lx = λ2x, we
are given a vector x ⊥ 1 such that xTLx ≤ (λ2 + ε)xTx, then the algorithm finds a
cut such that φ(S) ≤

√
4φ(G) + 2ε. We will now see how to compute such a vector

using O((|V |+ |E|) · 1
ε
· log |V |

ε
) arithmetic operations.

A symmetric matrix is positive semi-definite (abbreviated PSD) if all its eigenvalues
are nonnegative. We begin by describing an algorithm that approximates the largest
eigenvalue of a given symmetric PSD matrix. This might not seem to help very much
because because we want to compute the second smallest, not the largest, eigenvalue.
We will see, however, that the algorithm is easily modified to accomplish what we
want.

3.1 The Power Method to Approximate the Largest Eigen-
value

The algorithm works as follows

Algorithm Power

Input: PSD matrix M , parameter k

• Pick uniformly at random x0 ∼ {−1, 1}n

• for i := 1 to k
xi := M · xi−1

• return xk

That is, the algorithm simply picks uniformly at random a vector x with ±1 coordi-
nates, and outputs Mkx.

Note that the algorithm performs O(k · (n + m)) arithmetic operations, where m is
the number of non-zero entries of the matrix M .

Theorem 6 For every PSD matrix M , positive integer k and parameter ε > 0, with
probability ≥ 3/16 over the choice of x0, the algorithm Power outputs a vector xk
such that
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xTkMxk
xTk xk

≥ λ1 · (1− ε) ·
1

1 + 4n(1− ε)2k

where λ1 is the largest eigenvalue of M .

Note that, in particular, we can have k = O(log n/ε) and
xT
kMxk

xT
k xk

≥ (1−O(ε)) · λ1.

Let λ1 ≥ · · ·λn be the eigenvalues of M , with multiplicities, and v1, . . . ,vn be a
system of orthonormal eigenvectors such that Mvi = λivi. Theorem 6 is implied by
the following two lemmas

Lemma 7 Let v ∈ Rn be a vector such that ||v|| = 1. Sample uniformly x ∼
{−1, 1}n. Then

P
[
|〈x,v〉| ≥ 1

2

]
≥ 3

16

Lemma 8 For every x ∈ Rn, for every positive integer k and positive ε > 0, if we
define y := Mkx, we have

yTMy

yTy
≥ λ1 · (1− ε) ·

(
1 +

||x||2

〈x,v1〉2
(1− ε)2k

)−1
It remains to prove the two lemmas.

Proof: (Of Lemma 7) Let v = (v1, . . . , vn). The inner product 〈x,v〉 is the random
variable

S :=
∑
i

xivi

Let us compute the first, second, and fourth moment of S.

ES = 0

ES2 =
∑
i

v2i = 1

ES4 = 3

(∑
i

v2i

)
− 2

∑
i

v4i ≤ 3
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Recall that the Paley-Zygmund inequality states that if Z is a non-negative random
variable with finite variance, then, for every 0 ≤ δ ≤ 1, we have

P[Z ≥ δ EZ] ≥ (1− δ)2 · (EZ)2

EZ2
(1)

which follows by noting that

EZ = E[Z · 1Z<δ EZ ] + E[Z · 1Z≥δ EZ ] ,

that

E[Z · 1Z<δ EZ ] ≤ δ EZ ,

and that

E[Z · 1Z≥δ EZ ] ≤
√
EZ2 ·

√
E 1Z≥δ EZ

=
√
EZ2

√
P[Z ≥ δ EZ]

We apply the Paley-Zygmund inequality to the case Z = S2 and δ = 1/4, and we
derive

P
[
S2 ≥ 1

4

]
≥
(

3

4

)2

· 1

3
=

3

16

�

Remark 9 The proof of Lemma 7 works even if x ∼ {−1, 1}n is selected according to
a 4-wise independent distribution. This means that the algorithm can be derandomized
in polynomial time.

Proof: (Of Lemma 8) Let us write x as a linear combination of the eigenvectors

x = a1v1 + · · ·+ anvn

where the coefficients can be computed as ai = 〈x,vi〉. We have

y = a1λ
k
1v1 + · · ·+ anλ

k
nvn

and so
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yTMy =
∑
i

a2iλ
2k+1
i

and
yTy =

∑
i

a2iλ
2k
i

We need to prove a lower bound to the ratio of the above two quantities. We will
compute a lower bound to the numerator and an upper bound to the denominator in
terms of the same parameter.

Let ` be the number of eigenvalues larger than λ1 · (1 − ε). Then, recalling that the
eigenvalues are sorted in non-increasing order, we have

yTMy ≥
∑̀
i=1

a2iλ
2k+1
i ≥ λ1(1− ε)

∑̀
i=1

a2iλ
2k
i

We also see that

n∑
i=`+1

a2iλ
2k
i

≤ λ2k1 · (1− ε)2k
n∑

i=`+1

a2i

≤ λ2k1 · (1− ε)2k · ||x||2

≤ a21λ
2k
1 (1− ε)2t · ||x||

2

a21

≤ ||x||
2

a21
(1− ε)2k

∑̀
i=1

a2iλ
2k
i

So we have

yTy ≤
(

1 +
||x||2

a21
(1− ε)2k

)
·
∑̀
i=1

a2i

giving

yTMy

yTy
≥ λ1 · (1− ε) ·

(
1 +
||x||2

a21
(1− ε)2k

)−1
�
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Remark 10 Where did we use the assumption that M is positive semidefinite? What
happens if we apply this algorithm to the adjacency matrix of a bipartite graph?

3.2 Approximating the Second Largest Eigenvalue

Suppose now that we are interested in finding the second largest eigenvalue of a given
PSD matrix M . If M has eigenvalues λ1 ≥ λ2 ≥ · · ·λn, and we know the eigenvector
v1 of λ2, then M is a PSD linear map from the orthogonal space to v1 to itself, and λ2
is the largest eigenvalue of this linear map. We can then run the previous algorithm
on this linear map.

Algorithm Power2

Input: PSD matrix M , vector v1 parameter k

• Pick uniformly at random x ∼ {−1, 1}n

• x0 := x− v1 · 〈x,v1〉

• for i := 1 to k
xi := M · xi−1

• return xk

If v1, . . . ,vn is an orthonormal basis of eigenvectors for the eigenvalues λ1 ≥ · · · ≥ λn
of M , then, at the beginning, we pick a random vector

x = a1v1 + a2v2 + · · · anvn

that, with probability at least 3/16, satisfies |a2| ≥ 1/2. (Cf. Lemma 7.) Then we
compute x0, which is the projection of x on the subspace orthogonal to v1, that is

x0 = a2v2 + · · · anvn

Note that ||x||2 = n and that ||x0||2 ≤ n.

The output is the vector xk

xk = a2λ
k
2v2 + · · · anλknvn

If we apply Lemma 8 to subspace orthogonal to v1, we see that when |a2| ≥ 1/2 we
have that, for every 0 < ε < 1,

xTkMxk
xTk xk

≥ λ2 · (1− ε) ·
1

4n(1− ε)2k

We have thus established the following analysis.
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Theorem 11 For every PSD matrix M , positive integer k and parameter ε > 0, if v1

is a length-1 eigenvector of the largest eigenvalue of M , then with probability ≥ 3/16
over the choice of x0, the algorithm Power2 outputs a vector xk ⊥ v1 such that

xTkMxk
xTk xk

≥ λ2 · (1− ε) ·
1

1 + 4n(1− ε)2k

where λ2 is the second largest eigenvalue of M , counting multiplicities.

3.3 The Second Smallest Eigenvalue of the Laplacian

Finally, we come to the case in which we want to compute the second smallest eigen-
value of the normalized Laplacian matrix L = I− 1

d
A of a d-regular graph G = (V,E),

where A is the adjacency matrix of G.

Consider the matrix M := 2I − L = I + 1
d
A. Then if 0 = λ1 ≤ . . . ≤ λn ≤ 2 are the

eigenvalues of L, we have that

2 = 2− λ1 ≥ 2− λ2 ≥ · · · ≥ 2− λn ≥ 0

are the eigenvalues of M , and that M is PSD. M and L have the same eigenvectors,
and so v1 = 1√

n
(1, . . . , 1) is a length-1 eigenvector of the largest eigenvalue of M .

By running algorithm Power2, we can find a vector x such that

xTMxT ≥ (1− ε) · (2− λ2) · xTx

and
xTMxT = 2xTx− xTLx

so, rearranging, we have
xTLx

xTx
≤ λ2 + 2ε

If we want to compute a vector whose Rayleigh quotient is, say, at most 2λ2, then
the running time will be Õ((|V | + |E|)/λ2), because we need to set ε = λ2/2, which
is not nearly linear in the size of the graph if λ2 is, say O(1/|V |).
For a running time that is nearly linear in n for all values of λ2, one can, instead,
apply the power method to the pseudoinverse L+ of L. (Assuming that the graph is
connected, L+x is the unique vector y such that Ly = x, if x ⊥ (1, . . . , 1), and L+x =
0 if x is parallel to (1, . . . , 1).) This is because L+ has eigenvalues 0, 1/λ2, . . . , 1/λn,
and so L+ is PSD and 1/λ2 is its largest eigenvalue.

Although computing L+ is not known to be doable in nearly linear time, there are
nearly linear time algorithms that, given x, solve in y the linear system Ly = x,
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and this is the same as computing the product L+x, which is enough to implement
algorithm Power applied to L+.

(Such algorithms will be discussed in the third part of the course. The algorithms
will find an approximate solution y to the linear system Ly = x, but this will be
sufficient. In the following, we proceed as if the solution was exact.)

In time O((V + |E|) · (log |V |/ε)O(1)), we can find a vector y such that y = (L+)kx,
where x is a random vector in {−1, 1}n, shifted to be orthogonal to (1, . . . , 1) and
k = O(log |V |/ε). What is the Rayleigh quotient of such a vector with respect to L?

Let v1, . . . ,vn be a basis of orthonormal eigenvectors for L and L+. If 0 = λ1 ≤ λ2 ≤
· · · ≤ λn are the eigenvalues of L, then we have

Lv1 = L+v1 = 0

and, for i = 1, . . . , n, we have

Lvi = λi L+vi =
1

λi

Write x = a2v2 + · · · anvn, where
∑

i a
2
i ≤ n, and ssume that, as happens with

probability at least 3/16, we have a22 ≥ 1
4
. Then

y =
n∑
i=2

ai
1

λki

and the Rayleigh quotient of y with respect to L is

yTLy

yTy
=

∑
i a

2
i

1

λ2k−1
i∑

i a
2
i

1
λ2ki

and the analysis proceeds similarly to the analysis of the previous section. If we let `
be the index such that λ` ≤ (1+ε)·λ2 ≤ λ`+1 then we can upper bound the numerator
as

∑
i

a2i
1

λ2k−1i

≤
∑
i≤`

a2i
1

λ2k−1i

+
1

(1 + ε)2k−1λ2k−12

∑
i>`

a2i

≤
∑
i≤`

a2i
1

λ2k−1i

+
1

(1 + ε)2k−1λ2k−12

· n

≤
∑
i≤`

a2i
1

λ2k−1i

+
1

(1 + ε)2k−1λ2k−12

· 4na22
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≤
(

1 +
4n

(1 + ε)2k−1

)
·
∑
i≤`

a2i
1

λ2k−1i

and we can lower bound the denominator as

∑
i

a2i
1

λ2ki
≥
∑
i≤`

a2i
1

λ2ki

≥ 1

(1 + ε)λ2
·
∑
i≤`

a2i
1

λ2k−1i

and the Rayleigh quotient is

yTLy

yTy
≤ λ2 · (1 + ε) ·

(
1 +

4n

(1 + ε)2k−1

)
≤ (1 + 2ε) · λ2

when k = O
(
1
ε

log n
ε

)
.
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