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Lecture 13

In which we construct a family of expander graphs.

The problem of constructing expander graphs is the task of devising a familyGn(Vn, En),
such that φ(Gn) ≥ c for a constant c > 0 independent of n and such that the graphs
Gn are constructible in time polynomial in n and have size ≥ n. Usually, we are
interested in the additional property that the graphs are regular (although we allow
parallel edges and self-loops) and have a fixed constant degree independent of n. Ide-
ally, we would like to have a construction with n vertices for every n, although usually
the constructions work only for some subset of the integers n. (For applications, it is
usually enough if for every n there is an expander whose number of vertices is ≥ n
and ≤ nO(1) in the family.) Such families of graphs have several applications.

There are two main approaches to the construction of expander graphs. In the alge-
braic approach the set of vertices is seen as a group, and the edge set is defined in
terms of group operations. These constructions have usually the advantage of being
very easy to describe, and to lead to very efficient computations in applications. In
particular, it is usually possible, given the O(log n)-bit long description of a vertex
v, to compute in time (log n)O(1) the list of neighbors of v. This efficient “local”
computability of the graph enables applications in which one uses an expander of
exponential size and, for example, performs short random walks on the graph. The
disadvantage of this approach is that the analyses of algebraic constructions tend to
be extremely difficult. Today we will see one of the few algebraic constructions that
have a relatively easy analysis.

The other approach is combinatorial and it relies on graph operations that, given two
expanders with n1 and n2 vertices, respectively, construct a new expander with n1 ·n2

vertices. One can then start with a small expander, which can be found by brute
force, and then construct arbitrarily large expanders by repeated application of the
graph operation.

1 The Marguli-Gabber-Galil Expanders

We present a construction of expander graphs due to Margulis, which was the first
explicit construction of expanders, and its analysis due to Gabber and Galil. The
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analysis presented here includes later simplifications, and it follows an exposition of
James Lee.

For every n, we construct graphs with n2 vertices, and we think of the vertex set as
Zn × Zn, the group of pairs from {0, . . . , n − 1} × {0, . . . , n − 1} where the group
operation is coordinate-wise addition modulo n.

Define the functions S(a, b) := (a, a+ b) and T (a, b) := (a+ b, b), where all operations
are modulo n. Then the graph Gn(Vn, En) has vertex set Vn := Zn × Zn and the
vertex (a, b) is connected to the vertices

(a+ 1, b), (a− 1, b), (a, b+ 1), (a, b− 1), S(a, b), S−1(a, b), T (a, b), T−1(a, b)

so that Gn is an 8-regular graph. (The graph has parallel edges and self-loops.)

We will prove that there is a constant c > 0 such that λ2(Gn) ≥ c for every n.

The analysis will be in three steps.

First, we show that λ2(Gn) is bounded from below, up to a constant, by the “spectral
gap” of an infinite graph Rn, whose vertex set is [0, n]2. We write “spectral gap”
in quote because we will not define a Laplacian and argue about the existence of
a spectrum, but just study the infimum of an expression that looks like a Rayleigh
quotient, and prove that λ2(Gn) is at least a constant times this infimum. This is
proved by showing that for every test function f that sums to zero defined over Z2

n we
can define a function g over [0, n] whose integral is zero and whose Rayleigh quotient
for Rn is the same, up to a constant factor, as the Rayleigh quotient of f for Gn

Then we consider another infinite graph G∞, with vertex set Z×Z, and again define a
formal “spectral gap” by considering the infimum of a Rayleigh quotient and we prove
that, for every n, the spectral gap of Rn is bounded from below, up to a constant, by
the spectral gap of G∞. This is proved by showing that if f is a test function whose
integral is zero and whose Rayleigh quotient for Rn is small, the Fourier transform of
f is a test function of small Rayleigh quotient for G∞.

Finally, we define a notion of expansion for graphs with a countable number of vertices,
such as G∞. We prove that for infinite graphs with a countable set of vertices there
is a Cheeger inequality relating expansion and spectral gap, we prove that G∞ has
constant expansion, and we use the Cheeger inequality to conclude that G∞ has
constant spectral gap. (From the previous steps, it follows that Rn, and hence Gn

also have spectral gap bounded from below by an absolute constant.)

2 First Step: The Continuous Graph

For every n, we consider a graph Rn with vertex set [0, n)2 and such that every vertex
(x, y) is connected to
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S(x, y), S−1(x, y), T (x, y), T−1(x, y)

where, as before, S(x, y) = (x, x + y) and T (x, y) = T (x + y, y) and the operations
are done modulo n.

(We are thinking of [0, n) as a group with the operation of addition modulo n, that is,
the group quotient R/nZ, where nZ is the group of multiples of n with the operation
of addition, just like Zn is the quotient Z/nZ.)

Let `2([0, n)2) be set of functions f : [0, n)2 → R such that
∫

[0,n)2
(f(x, y))2 dx dy is

well defined and finite. Then we define the following quantity, that we think of as the
spectral gap of Rn:

λ2(Rn) := inf
f∈`2([0,n)2) :

R
[0,n)2 f=0

∫
[0,n)2

|f(x, y)− f(S(x, y))|2 + |f(x, y)− f(T (x, y))|2 dx dy∫
[0,n)2

(f(x, y))2 dx dy

We could define a Laplacian operator and show that the above quantity is indeed the
second smallest eigenvalue, but it will not be necessary for our proof.

We have the following bound.

Theorem 1 λ2(Gn) ≥ 1
12
· λ2(Rn).

Proof: Let f be the function such that

λ2(G) =

∑
c∈Z2

n
|f(c)− f(S(c))|2 + |f(c)− f(T (c))|2 + |f(c)− f(c+ (0, 1))|2 + |f(c)− f(c+ (1, 0))|2

8
∑

c∈Z2
n
f 2(c)

For a point (x, y) ∈ [0, n)2, define floor(x, y) := (bxc, byc). We extend f to a function
f̃ : [0, n)2 → R by defining

f̃(z) := f(floor(z))

This means that we tile the square [0, n)2 into unit squares whose corners are integer-
coordinate, and that f̃ is constant on each unit square, and it equals the value of f
at the left-bottom corner of the square.

It is immediate to see that ∫
[0,n)2

f̃ 2(z) dz =
∑
c∈Z2

n

f 2(c)
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and so, up to a factor of 8, the denominator of the Rayleigh quotient of f is the same
as the denominator of the Rayleigh quotient of f̃ .

It remains to bound the numerators.

Observe that for every z ∈ [0, 1)2, we have that floor(S(z)) equals either S(floor(z))
or S(floor(z)) + (0, 1), and that floor(T (z)) equals either T (floor(z) or T (floor(z).
Also, floor(z + (0, 1)) = floor(z) + (0, 1), and the same is true for (1, 0). The
numerator of the Rayleigh quotient of f̃ is

∑
c=(a,b)∈Z2

n

∫
[a,a+1)×[b,b+1)

|f̃(z)− f̃(S(z))|2 + |f̃(z)− f̃(T (z))|2 dz

=
1

2

∑
c∈Z2

n

|f(c)−f(S(c))|2+|f(c)−f(S(c)+(0, 1))|2+|f(c)−f(T (c))|2+|f(c)−f(T (c)+(1, 0))|2

because for a (x, y) randomly chosen in the square [a, a + 1) × [b, b + 1), there is
probability 1/2 that bx+yc = bxc+byc and probability 1/2 that bx+yc = bxc+byc+1.

Now we can use the “triangle inequality”

|α− β|2 ≤ 2|α− γ|2 + 2|γ − β|2

to bound the above quantity

≤ 1

2

∑
c∈Z2

n

|f(c)− f(S(c))|2+

2|f(c)− f(c+ (0, 1))|2 + 2|f(c+ (0, 1))− f(S(c) + (0, 1))|2+
|f(c)− f(T (c))|2+
2|f(c)− f(c+ (1, 0))|2 + 2|f(c+ (1, 0))− f(T (c) + (1, 0))|2

which simplifies to

=
1

2

∑
c∈Z2

n

3|f(c)−f(S(c))|2+3|f(c)−f(T (c))|2+2|f(c)−f(c+(0, 1))|2+2|f(c)−f(c+(1, 0))|2

which is at most 3/2 times the numerator of the Rayleigh quotient of f . �

3 Second Step: The Countable Graph

We now define the graph Z of vertex set Z× Z− {(0, 0)}, where each vertex (a, b) is
connected to

(a, a+ b), (a, a− b), (a+ b, a), (a− b, a)
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Note

For a graph G = (V,E) with an countably infinite set of vectors, define `2(V ) to be
the set of functions f : V → R such that

∑
v∈V f

2(v) is finite, and define the spectral
gap of G as

λ2(G) := inf
f∈`2(V )

∑
(u,v)∈V |f(u)− f(v)|2∑

v f
2(v)

So that

λ2(Z) := inf
f∈`2(Z×Z−{(0,0)})

∑
a,b |f(a, b)− f(a, a+ b)|2 + |f(a, b)− f(a+ b, a)|2∑

a,b f
2(a, b)

We want to show the following result.

Theorem 2 For every n, λ2(Rn) ≥ λ2(Z).

Proof: This will be the most interesting part of the argument. Let f ∈ `2([0, n)2)
be any function such that

∫
f = 0, we will show that the Fourier transform f̂ of f

has a Rayleigh quotient for Z that is at most the Rayleigh quotient of f for Rn.

First, we briefly recall the definitions of Fourier transforms. If f : [0, n)2 → R is such
that ∫

z∈[0,n)2
f 2(z) dz <∞

then we can write the linear combination

f(z) =
∑
c∈Z×Z

f̂(c) · χc(z)

where the basis functions are

χa,b(x, y) =
1

n
e2πi·(ax+by)

and the coefficients are

f̂(c) = 〈f, χa,b〉 :=

∫
[0,n)2

f(z)χc(z) dz

The condition
∫
f = 0 gives

f̂(0, 0) = 0

and the Parseval identity gives∑
c6=(0,0)

f̂ 2(c) =
∑
c

f̂ 2(c) =

∫
f 2(z) dz
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and so we have that the denominator of the Rayleigh quotient of f for Rn and of f̂
for Z As usual, the numerator is more complicated.

We can break up the numerator of the Rayleigh quotient of f as∫
s2(z) dz +

∫
t2(z) dz

where s(z) := f(z)− f(S(z)) and t(z) := f(z)− f(T (z)), and we can use Parseval’s
identity to rewrite it as ∑

c

ŝ2(c) + t̂2(c)

=
∑
c

|f̂(c)− (̂f ◦ S)(c)|2 + |f̂(c)− ̂(f ◦ T )(c)|2

The Fourier coefficients of the function (f ◦ S)(z) = f(S(z)) can be computed as

(̂f ◦ S)(a, b) =
1

n

∫
f(S(x, y))e2πi(ax+by)

=
1

n

∫
f(x, x+ y)e2πi(ax+by)

=
1

n

∫
f(x, y′)e2πi(ax+by′−bx)

= f̂(a− b, b)

where we used the change of variable y′ ← x+ y.

Similarly, ̂(f ◦ T )(a, b) = f̂(a, b− a). This means that the numerator of the Rayleigh
quotient of f for Rn is equal to the numerator of the Rayleigh quotient of f̂ for Z. �

4 Third Step: Proving a Spectral Gap for Z

Now we need to prove that λ2(Z) ≥ Ω(1). We will prove that Z has constant edge
expansion, and then we will use a Cheeger inequality for countable graphs to deduce
a spectral gap.

Define the edge expansion of a graph G = (V,E) with a countably infinite set of
vertices as

φ(G) = inf
A⊆V,A finite

E(A, Ā)

|A|
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Note that the edge expansion can be zero even if the graph is connected.

We will prove the following theorems

Theorem 3 (Cheeger inequality for countable graphs) For every d-regular graph
G = (V,E) with a countably infinite set of vertices we have

φ(G) ≤
√

2 · d · λ2(G)

Theorem 4 (Expansion of Z) φ(Z) ≥ 1.25.

Putting it all together we have that λ2(Z) ≥ φ(Z)2

2d
> .195, λ2(Rn) > .195, and

λ2(Gn) > .0162.

4.1 Cheeger inequality for countable graphs

Proof:[Of Theorem 3] This is similar to the proof for finite graphs, with the sim-
plification that we do not need to worry about constructing a set containing at most
half of the vertices.

Let f ∈ `2(Z2) be any function. We will show that φ is at most
√

2r where

r :=

∑
(u,v)∈E |f(u)− f(v)|2∑

v∈V f
2(v)

is the Rayleigh quotient of f .

For every threshold t ≥ tmin := infv∈V f
2(v), define the set St ⊆ V as

St := {v : f 2(v) > t}

and note that each set is finite because
∑

v f
2(v) is finite. We have, for t > tmin,

φ(G) ≤ E(St, S̄t)

|St|

and, for all t ≥ 0
|St| · φ(G) ≤ E(St, S̄t)

Now we compute the integral of the numerator and denominator of the above ex-
pression, and we will find the numerator and denominator of the Rayleigh quotient
r. ∫ ∞

0

|St| dt =
∑
v∈V

∫ ∞

0

If2(v)>t dt =
∑
v∈V

f 2(v)
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and ∫ ∞

0

|E(St, S̄t) dt =
∑

(u,v)∈E

∫ ∞

0

It between f2(u),f2(v) dt =
∑
(u,v)

|f 2(u)− f 2(v)|

Which means

φ ≤
∑

u,v |f(u)− f(v)|2∑
v f

2(v)

Now we proceed with Cauchy Swarz:

∑
(u,v)∈E

|f 2(u)− f 2(v)|

=
∑

(u,v)∈E

|f(u)− f(v)| · |f(u) + f(v)|

≤
√ ∑

(u,v)∈E

|f(u)− f(v)|2 ·
√ ∑

(u,v)∈E

|f(u) + f(v)|2

≤
√ ∑

(u,v)∈E

|f(u)− f(v)|2 ·
√ ∑

(u,v)∈E

2f 2(u) + 2f 2(v)

=

√ ∑
(u,v)∈E

|f(u)− f(v)|2 ·
√∑

v∈V

2df(v)2

And we have

φ ≤

√∑
(u,v)∈E |f(u)− f(v)|2 ·

√
2d√∑

v∈V f(v)2
=
√

2d · r

�

4.2 Expansion of Z

After all these reductions, we finally come to the point where we need to prove that
something is an expander.

Proof:[Of Theorem 4] Let A be a finite subset of Z× Z− {(0, 0}.
Let A0 be the set of elements of A that have one 0 coordinate. Let A1, A2, A3, A4

be the set of elements of A with nonzero coordinate that belong to the 1st, 2nd, 3rd
and 4th quadrant. (Starting from the quadrant of points having both coordinates
positive, and numbering the remaining ones clockwise.)
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Claim 5 E(A− A0, Ā) ≥ |A− A0| = |A| − |A0|.

Proof: Consider the sets S(A1) and T (A1); both S() and T () are permutations,
and so |S(A1)| = |T (A1)| = |A1|. Also, S(A1) and T (A1) are disjoint, because if we
had (a, a+ b) = (a′ + b′, b′) then we would have b = −a′ while all the coordinates are
strictly positive. Finally, S(A1) and T (A1) are also contained in the first quadrant,
and so at least |A1| of the edges leaving A1 lands outside A. We can make a similar
argument in each quadrant, considering the sets S−1(A2) and T−1(A2) in the second
quadrant, the sets S(A3) and T (A3) in the third, and S−1(A4) and T−1(A4) in the
fourth. �

Claim 6 E(A0, Ā) ≥ 4|A0| − 3|A− A0| = 7|A0| − 3|A|

Proof: All the edges that have one endpoint in A0 have the other endpoint outside
of A0. Some of those edges, however, may land in A−A0. Overall, A−A0 can account
for at most 4|A−A0| edges, and we have already computed that at least |A−A0| of
them land into Ā, so A− A0 can absorb at most 3|A− A0| of the outgoing edges of
A0. �

Balancing the two equalities (adding 7/8 times the first plus 1/8 times the second)
gives us the theorem. �
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