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Lecture 6

In which we talk about the spectrum of Cayley graphs of abelian groups, we compute
the eigenvalues and eigenvectors of the cycle and of the hypercube, and we verify the
tightness of the Cheeger inequalities and of the analysis of spectral partitioning

In this lecture we will prove the following results:

1. The dimension-d hypercube Hd has λ2 = 1 − 2
d

and h(Hd) = 1
d
, giving an

infinite family of graphs for which 1−λ2

2
= h(G), showing that the first Cheeger

inequality is exactly tight.

2. The n-cycle Cn has λ2 = 1− O(n−2), and h(Cn) ≥ 2
n
, giving an infinite family

of graphs for which h(G) = Ω(
√

1− λ2), showing that the second Cheeger
inequality is tight up to a constant.

3. There is an eigenvector of the second eigenvalue of the hypercube Hd, such
that the SpectralPartitioning algorithm, given such a vector, outputs a cut
(S, V − S) of expansion h(S) = Ω(1/

√
d), showing that the analysis of the

SpectralPartitioning algorithm is tight up to a constant.

1 Cayley Graphs and Their Spectrum

Let Γ be a finite group. We will use additive notation, although the following defi-
nition applies to non-commutative groups as well. A subset S ⊆ Γ is symmetric if
a ∈ S ⇔ −a ∈ S.

Definition 1 For a group Γ and a symmetric subset S ⊆ Γ, the Cayley graph
Cay(Γ, S) is the graph whose vertex set is Γ, and such that (a, b) is an edge if and
only if b− a ∈ S. Note that the graph is undirected and |S|-regular.

We can also define Cayley weighted graphs: if w : Γ → R is a function such that
w(a) = w(−a) for every a ∈ Γ, then we can define the weighted graph Cay(G,w)
in which the edge (a, b) has weight w(b − a). We will usually work with unweighted
graphs.
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Example 2 (Cycle) The n-vertex cycle can be constructed as the Cayley graph
Cay(Z/nZ, {−1, 1}).

Example 3 (Hypercube) The d-dimensional hypercube can be constructed as the
Cayley graph

Cay((Z/2Z)d, {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)})

where the group is the set {0, 1}d with the operation of bit-wise xor, and the set S is
the set of bit-vectors with exactly one 1.

If we construct a Cayley graph from a finite abelian group, then the eigenvectors are
the characters of the groups, and the eigenvalues have a very simple description.

Lemma 4 Let Γ be a finite abelian group, χ : Γ → C be a character of Γ, S ⊆ Γ
be a symmetric set. Let M be the normalized adjacency matrix of the Cayley graph
G = Cay(Γ, S). Consider the vector x ∈ CΓ such that xa = χ(a).

Then x is an eigenvector of G, with eigenvalue

1

|S|
∑
s∈S

χ(s)

Proof: Consider the a-th entry of Mx:

(Mx)a =
∑
b

Ma,bxb

=
1

|S|
∑

b:b−a∈S

χ(b)

=
1

|S|
∑
s∈S

χ(a+ s)

= xa ·
1

|S|
·
∑
s∈S

χ(s)

And so

Mx =

(
1

|S|
∑
s∈S

χ(s)

)
· x

�

The eigenvalues of the form 1
S

∑
s∈S χ(s), where χ is a character, enumerate all the

eigenvalues of the graph, as can be deduced from the following observations:
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1. Every character is an eigenvector;

2. The characters are linearly independent (as functions χ : Γ → C and, equiva-
lently, as vectors in CΓ);

3. There are as many characters as group elements, and so as many characters as
nodes in the corresponding Cayley graphs.

It is remarkable that, for a Cayley graph, a system of eigenvectors can be determined
based solely on the underlying group, independently of the set S.

2 The Cycle

The n-cycle is the Cayley graph Cay(Z/nZ, {−1,+1}). Recall that, for every n ∈
{0, . . . , n− 1}, the group Z/nZ has a character χr(x) = e2πirx/n.

This means that for every r ∈ {0, . . . , n− 1} we have the eigenvalue

λr =
1

2
e2πir/n +

1

2
e−2πir/n = cos(2πr/n)

where we used the facts that eix = cos(x) + i sin(x), that cos(x) = cos(−x), and
sin(x) = − sin(−x).

For r = 0 we have the eigenvalue 1. For r = 1 we have the second largest eigenvalue
cos(2π/n) = 1−Θ(1/n2).

The expansion of the cycle is h(Cn) ≥ 2/n, and so the cycle is an example in which
the second Cheeger inequality is tight.

3 The Hypercube

The group {0, 1}d with bitwise xor has 2d characters; for every r ∈ {0, 1}d there is a
character χr : {0, 1}d → {−1, 1} defined as

χr(x) = (−1)
P

i rixi

Let us denote the set S by {e1, . . . , ed}, where we let ej ∈ {0, 1}d denote the bit-vector
that has a 1 in the j-th position, and zeroes everywhere else. This means that, for
every bit-vector r ∈ {0, 1}d, the hypercube has the eigenvalue

1

d

∑
j

χr(e
j) =

1

d

∑
j

(−1)rj =
1

d
(−|r|+ d− |r|) = 1− 2

|r|
d
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where we denote by |r| the weight of r, that is, the number of ones in r.

Corresponding to r = (0, . . . , 0), we have the eigenvalue 1.

For each of the d vectors r with exactly one 1, we have the second largest eigenvalue1−
2/d.

Let us compute the expansion of the hypercube. Consider “dimension cuts” of the
form Si := {x ∈ {0, 1}n : xi = 0}. The set Si contains half of the vertices, and the
number of edges that cross the cut (Si, V − Si) is also equal to half the number of
vertices (because the edges form a perfect matching), so we have h(Si) = 1

d
.

These calculations show that the first Cheeger inequality (1− λ2)/2 ≤ h(G) is tight
for the hypercube.

Finally, we consider the tightness of the approximation analysis of the spectral par-
titioning algorithm.

We have seen that, in the d-dimensional hypercube, the second eigenvalue has mul-
tiplicity d, and that its eigenvectors are vectors xj ∈ R2d

such that xja = (−1)aj .
Consider now the vector x :=

∑
j xj; this is still clearly an eigenvector of the second

eigenvalue. The entries of the vector x are

xa =
∑
j

(−1)aj = d− 2|a|

Suppose now that we apply the spectral partitioning algorithm using x as our vector.
This is equivalent to considering all the cuts (St, V − St) in the hypercube in which
we pick a threshold t and define St := {a ∈ {0, 1}n : |a| ≥ t}.
Some calculations with binomial coefficients show that the best such “threshold cut”
is the “majority cut” in which we pick t = n/2, and that the expansion of Sn/2 is

h(Sn/2) = Ω

(
1√
d

)
This gives an example of a graph and of a choice of eigenvector for the second eigen-
value that, given as input to the spectral partitioning algorithm, result in the output of
a cut (S, V −S) such that h(S) ≥ Ω(

√
h(G)). Recall that we proved h(S) ≤ 2

√
h(G),

which is thus tight.
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