
Stanford University — CS261: Optimization Handout 10
Luca Trevisan February 3, 2011

Lecture 10

In which we discuss the worst-case running of the Ford-Fulkerson algorithm, discuss
plausible heuristics to choose an augmenting path in a good way, and begin analyzing
the “fattest path” heuristic.

In the last lecture we proved the Max-Flow Min-Cut theorem in a way that also
established the optimality of the Ford-Fulkerson algorithm: if we iteratively find
an augmenting path in the residual network and push more flow along that path,
as allowed by the capacity constraints, we will eventually find a flow for which no
augmenting path exists, and we proved that such a flow must be optimal.

Each iteration of the algorithm takes linear time in the size of the network: the
augmenting path can be found via a DFS of the residual network, for example. The
problem is that, in certain cases, the algorithm might take a very long time to finish.
Consider, for example, the following network.

Suppose that, at the first step, we pick the augmenting path s→ a→ b→ t. We can
only push one unit of flow along that path. After this first step, our residual network
(not showing edges out of t and into s, which are never used in an augmenting path)
is

1

Now it is possible that the algorithm picks the augmenting path s→ b→ a→ t along
which, again, only one unit of flow can be routed. We see that, indeed, it is possible
for the algorithm to keep picking augmenting paths that involve a link between a and
b, so that only one extra unit of flow is routed at each step.

The problem of very slow convergence times as in the above example can be avoided
if, at each iteration, we choose more carefully which augmenting path to use. One
reasonable heuristic is that it makes sense to pick the augmenting path along which
the most flow can be routed in one step. If we had used such an heuristic in the
above example, we would have found the optimum in two steps. Another, alternative,
heuristic is to pick the shortest augmenting path, that is, the augmenting path that
uses the fewest edges; this is reasonable because in this way we are going to use the
capacity of fewer edges and keep more residual capacity for later iterations. The use
of this heuristic would have also resulted in a two-iterations running time in the above
example.

1 The “fattest” augmenting path heuristic

We begin by studying the first heuristic: that is we consider an implementation of the
Ford-Fulkerson algorithm in which, at every iteration, we pick a fattest augmenting
path in the residual network, where the fatness of a path in a capacitated network
is the minimum capacity of the edges in the path. In the network of our previous
example, the paths s→ a→ t and s→ b→ t have fatness 1, 000, 000, while the path
s→ a→ b→ t has fatness 1.

How do we find a fattest augmenting path? We will show that it can be found with
a simple modification of Dijkstra’s algorithm for finding shortest paths.

2

1.1 Dijkstra’s algorithm

Let us first quickly recall how Dijkstra’s algorithm works. Suppose that we have a
graph in which each edge (u, v) has a length `(u, v) and, for two given vertices s, t,
we want to find the path of minimal length from s to t, where the length of a path is
the sum of the lengths of the edges in the path. The algorithm will solve, for free, the
more general problem of computing the length of the shortest path from s to v for
every vertex v. In the algorithm, the data structure that holds information about a
vertex v has two fields: v.dist, which will eventually contain the length of the shortest
path from s to v, and v.pred which will contain the predecessor of v in a shortest path
from s to v, that is, the identity of the vertex that comes immediately before v in
such a path.

The distances are initialized to +∞, except for s.dist which is initialized to zero. The
algorithm initially puts all vertices in a priority queue Q. Recall that a priority queue
is a data structure that contains elements which have a numerical field called a key
(in this case the key is the dist field), and that supports the operation of inserting an
element in the queue, of finding and removing from the queue the element of minimal
key value, and of reducing the key field of a given element.

The algorithm works as follows:

Algorithm Dijkstra

• Input: graph G = (V, E), vertex s ∈ V , non-negative edge lengths `(·, ·)

• for each v ∈ V − {s}, let v.dist =∞

• s.dist = 0

• insert all vertices in a priority queue Q keyed by the dist field

• while Q is not empty

– find and remove vertex u in Q whose field u.dist is smallest among queue
elements

– for all vertices v such that (u, v) ∈ E

∗ if v.dist > u.dist + `(u, v) then

· v.dist := u.dist + `(u, v)

· update Q to reflect changed value of v.dist

· u.pred := v

The running time is equal to whatever time it takes to execute |V | insert operations,
|V | remove-min operations, and |E| reduce-key operations in the priority queue. The
simple implementation of a priority queue via a binary heap gives O(log |V |) running

3

time for each operation, and a total running time of O((|E|+ |V |) · log |V |). A more
elaborate data structure called a Fibonacci heap implements insert and remove-min
in O(log |V |) time, and is such that k decrease-key operations always take at most
O(k) time overall, so that the total running time is O(|V | log |V |+ |E|).
Regarding correctness, we can prove by induction that the algorithm maintains the
following invariant: at the beginning of each iteration of the while loop, the vertices
x which are not in the queue are such that x.dist is the correct value of the shortest
path length from s to x and such a shortest path can be realized by combining a
shortest path from s to x.pred and then continuing with the edge (x.pred, x). This
is certainly true at the beginning, because the first vertex to be removed is s, which
is at distance s.dist = 0 from itself, and if it is true at the end, when the queue is
empty, it means that at the end of the algorithm all vertices get their correct values
of x.dist and x.pred. So we need to show that if the invariant is true at a certain step
then it is true at the following step.

Basically, all we need to prove is that, at the beginning of each iteration, the vertex
u that we remove from the queue has correct values of u.dist and u.pred. If we call
x := u.pred, then x is a vertex that was removed from the queue at an earlier iteration
and so, by the inductive hypothesis, is such that x.dist is the correct shortest path
distance from s to x; if x = u.pred we also have u.dist = x.dist+`(u, v), which means
that there is indeed a path of length u.dist from s to u in which x is the predecessor
of u. We need to prove that this path is a shortest path. So suppose toward a
contradiction that there is a shorter path p of length < u.dist. The path p starts at
s, which is outside the queue, and ends at u, which is in the queue, so at some point
the path must have an edge (y, z) such that y is outside the queue and z is inside.
This also means that when y was removed from the queue it had the correct value
y.dist, and after we processed the neighbors of y we had z.dist ≤ y.dist + `(u, v).
But this would mean that z.dist is at most the length of the path p, while u.dist is
bigger than the length of the path p, which is impossible because u was chosen to be
the element with the smallest u.dist among elements of the queue.

1.2 Adaptation to find a fattest path

What would be the most straightforward adaptation of Dijkstra’s algorithm to the
problem of finding a fattest path? In the shortest path problem, the length of a path
is the sum of the lengths of the edges of the path, and we want to find a path of
minimal length; in the fattest path problem, the fatness of a path is the minimum
of the capacities of the edges of the path, and we want to find a path of maximal
fatness. So we just change sums to min, lengths to capacities, and minimization to
maximization.

4

Algorithm Dijkstra-F

• Input: graph G = (V, E), vertex s ∈ V , non-negative edge capac-
ities c(·, ·)

• for each v ∈ V − {s}, let v.fat = 0

• s.dist =∞

• insert all vertices in a priority queue Q keyed by the dist field

• while Q is not empty

– find and remove vertex u in Q whose field u.fat is largest
among queue elements

– for all vertices v such that (u, v) ∈ E

∗ if v.fat < min{u.fat, c(u, v)} then

· v.fat := min{u.fat, c(u, v)}
· update Q to reflect changed value of v.dist

· u.pred := v

The running time is the same and, quite amazingly, the proof of correctness is also
essentially the same. (Try writing it up.)

Remark 1 A useful feature of Dijkstra’s algorithm (and other shortest path algo-
rithms) is that it works to find “best” paths for a lot of different measures of “cost”
for a path, besides length and fatness. Basically, the only requirements to implement
the algorithm and prove correctness are:

• The cost of a path u1 → u2 → · · ·ut is no better than the cost of an initial
segment u1 → u2 → · · ·uk, k < t of the path. That is, if we are trying to
maximize the cost, we need the property that the cost of a path is at most the
cost of any initial segment (e.g., the fatness of a path is at most the fatness of
any initial segment, because in the former case we are taking the minimum over
a larger set of capacities); if we are trying to minimize the cost, we need the
property that the cost of a path is at least the cost of any initial segment.

• The cost of a path u1 → u2 → · · · → ut−1 → ut can be determined by only
knowing the cost of the path u1 → u2 → · · · → ut−1 and the cost of the edge
(ut−1, ut).

1.3 Analysis of the fattest augmenting path heuristic

In the next lecture, we will prove the following result.

5

Theorem 2 If (G = (V, E), s, t, c) is a network in which the optimal flow has cost
opt, then there is a path from s to t of fatness ≥ opt/m.

From the above theorem, we se that if we implement the Ford-Fulkerson algorithm
with the fattest-path heuristic, then, after we have found t augmenting paths, we
have a solution such that, in the residual network, the optimum flow has cost at most

opt ·
(

1− 1
2|E|

)t

.

To see why, call flowi the cost of the flow found by the algorithm after i iterations,
and resi the optimum of the residual network after i iterations of the algorithm.
Clearly we have resi = opt− flowi.

The theorem tells us that at iteration i+1 we are going to find an augmenting path of
fatness at least resi · 1

2|E| . (Because of the “virtual capacities,” the residual network
could have as many as twice the number of edges of the original network, but no
more.) This means that the cost of the flow at the end of the (i + 1)-th iteration is
going to be flowi+1 ≥ flowi + resi · 1

2|E| , which means that the residual optimum is
going to be

resi+1 = opt− flowi+1 ≤ opt−
(

flowi − resi ·
1

2|E|

)
= resi ·

(
1− 1

2|E|

)
We started with flow0 = 0 and res0 = opt, and so we must have rest ≤ opt ·(

1− 1
2|E|

)t

.

If the capacities are integers, then if the residual network has an optimum less than
1, its optimum must be zero. Recalling that 1− x ≤ e−x,

rest ≤ opt

(
1− 1

2|E|

)t

≤ opte−t/2|E| = eln opt−t/2|E|

This means that if t > 2|E| ln opt, then rest < 1, which implies rest = 0 and so it
means that, within the first 1 + 2|E| ln opt steps, the algorithm reaches a point in
which the residual network has no augmenting path and it stops.

We said that, using the simple binary heap implementation of Dijkstra’s algorithm,
the running time of one iteration is O((|V |+|E|)·log |V |), and so we have the following
analysis.

Theorem 3 The fattest-path implementation of the Ford-Fulkerson algorithm, given
in input a network with integer capacities whose optimal flow has cost opt, runs in
time at most

O((|V |+ |E|) · |E| · log |V | · log opt)

6

To complete the above running time analysis, we need to prove Theorem 1, which we
will do next time.

7

	The ``fattest'' augmenting path heuristic
	Dijkstra's algorithm
	Adaptation to find a fattest path
	Analysis of the fattest augmenting path heuristic

