
Stanford University — CS261: Optimization Handout 4
Luca Trevisan January 13, 2011

Lecture 4

In which we describe a 1.5-approximate algorithm for the Metric TSP, we introduce
the Set Cover problem, observe that it can be seen as a more general version of the
Vertex Cover problem, and we devise a logarithmic-factor approximation algorithm.

1 Better Approximation of the Traveling Sales-

man Problem

In the last lecture we discussed equivalent formulations of the Traveling Salesman
problem, and noted that Metric TSP-R can also be seen as the following problem:
given a set of points X and a symmetric distance function d : X×X → R≥0 that sat-
isfies the triangle inequality, find a multi-set of edges such that (X,E) is a connected
multi-graph in which every vertex has even degree and such that

∑
(u,v)∈E d(u, v) is

minimized.

Our idea will be to construct E by starting from a minimum-cost spanning tree of
X, and then adding edges so that every vertex becomes of even degree.

But how do we choose which edges to add to T?

Definition 1 (Perfect Matching) Recall that graph (V,M) is a matching if no two
edges in M have an endpoint in common, that is, if all vertices have degree zero or
one. If (V,M) is a matching, we also call the edge set M a matching. A matching is
a perfect matching if every vertex has degree one

Note that a perfect matching can exist only if the number of vertices is even, in which
case |M | = |V |/2.

Definition 2 (Min Cost Perfect Matching) The Minimum Cost Perfect Match-
ing Problem is defined as follows: an input of the problem is a an even-size set of

1

vertices V and a non-negative symmetric weight function w : V × V → R≥0; the goal
is to find a perfect matching (V,M) such that the cost

costw(M) :=
∑

(u,v)∈M

w(u, v)

of the matching is minimized.

We state, without proof, the following important result about perfect matchings.

Fact 3 There is a polynomial-time algorithm that solves the Minimum Cost Perfect
Matching Problem optimally.

We will need the following observation.

Fact 4 In every undirected graph, there is an even number of vertices having odd
degree.

Proof: Let G = (V,E) be any graph. For every vertex v ∈ V , let deg(v) be the
degree of v, and let O be the set of vertices whose degree is odd. We begin by noting
that the sum of the degrees of all vertices is even, because it counts every edge twice:

∑
v∈V

deg(v) = 2 · |E|

The sum of the degrees of the vertices in V − O is also even, because it is a sum of
even numbers. So we have that the sum of the degrees of the vertices in O is even,
because it is a difference of two even numbers:

∑
v∈O

deg(v) = 2 · |E| −
∑

v∈V−O

deg(v) ≡ 0 (mod 2)

Now it follows from arithmetic modulo 2 that if we sum a collection of odd numbers
and we obtain an even result, then it must be because we added an even number of
terms. (Because the sum of an even number of odd terms is even.) So we have proved
that |O| is even. �

We are now ready to describe our improved polynomial-time approximation algorithm
for General TSP-R.

• Input: instance (X, d) of Metric TSP-R

• Find a minimum cost spanning tree T = (X,E) of X relative to the weight
function d(·, ·)

2

• Let O be the set of points that have odd degree in T

• Find a minimum cost perfect matching (O,M) over the points in O relative to
the weight function d(·, ·)

• Let E ′ be the multiset of edges obtained by taking the edges of E and the edges
of M , with repetitions

• Find a Eulerian cycle C in the graph (X,E ′)

• Output C

We first note that the algorithm is correct, because (X,E ′) is a connected multigraph
(because it contains the connected graph T) and it is such that all vertices have even
degree, so it is possible to find an Eulerian cycle, and the Eulerian cycle is a feasible
solution to General TSP-R.

The cost of the solution found by the algorithm is

∑
(u,v)∈E′

d(u, v) = costd(E) + costd(M)

We have already proved that, if T = (X,E) is an optimal spanning tree, then
costd(E) ≤ optTSP−R(X, d).

Lemma 5 below shows that costd(M) ≤ 1
2
optTSP−R(X, d), and so we have that the

cost of the solution found by the algorithm is ≤ 1.5 ·optTSP−R(X, d), and so we have a
polynomial time 3

2
-approximate algorithm for Metric TSP-R. (And also General TSP-

R and Metric TSP-NR by the equivalence that we proved in the previous lecture.)

Lemma 5 Let X be a set of points, d(·, ·) be a symmetric distance function that
satisfies the triangle inequality, and O ⊆ X be an-even size subset of points. Let M∗

be a minimum cost perfect matching for O with respect to the weight function d(·, ·).
Then

costd(M∗) ≤ 1

2
optTSP−R(X, d)

Proof: Let C be a cycle which is an optimal solution for the Metric TSP-R instance
(X, d). Consider the cycle C ′ which is obtained from C by skipping the elements of
X−O, and also the elements of O which are repeated more than once, so that exactly
once occurrence of every element of O is kept in C ′. For example, if X = {a, b, c, d, e},
O = {b, c, d, e} and C is the cycle a→ c→ b→ d→ e→ a→ b→ a then we obtain
C ′ by skipping the occurrences of a and the second occurrence of b, and we have
the cycle c → b → d → e → c. Because of the triangle inequality, the operation of

3

skipping a point (which means replacing the two edges u → v → w with the single
edge u→ w) can only make the cycle shorter, and so

costd(C ′) ≤ costd(C) = optTSP−R(X, d)

Now, C ′ is a cycle with an even number of vertices and edges, so we can write
C ′ = v1 → v2 → · · · → v2k → v1, where v1, . . . , v2k is some ordering of the vertices
and k := |O|/2. We note that we can partition the set of edges in C ′ into two perfect
matchings: the perfect matching {(v1, v2), (v3, v4), . . . , (v2k−1, v2k)} and the perfect
matching {(v2, v3), (v4, v5), . . . , (v2k, v1)}. Since C ′ is made of the union of the edges
of M1 and M2, we have

costd(C ′) = costd(M1) + costd(M2)

The perfect matchingM∗ is the minimum-cost perfect matching forO, and so costd(M1) ≥
costd(M∗) and costd(M2) ≥ costd(M∗), so we have

costd(C ′) ≥ 2costd(M∗)

and hence

optTSP−R(X, d) ≥ costd(C ′) ≥ 2 · costd(M∗)

�

An important point is that the algorithm that we just analyzed, like every other
approximation algorithm, is always able to provide, together with a feasible solution,
a certificate that the optimum is greater than or equal to a certain lower bound. In
the 2-approximate algorithm TSP algorithm from the previous lecture, the certificate
is a minimum spanning tree, and we have that the TSP optimum is at least the
cost of the minimum spanning tree. In the improved algorithm of today, the cost of
minimum spanning tree gives a lower bound, and twice the cost of the minimum cost
perfect matching over O gives another lower bound, and we can take the largest of
the two.

Let us work out an example of the algorithm on a concrete instance, and see what
kind of solution and what kind of lower bound we derive. Our set of points will be:
Cupertino, Mountain View, Palo Alto, Santa Clara, and Sunnyvale. We have the
following distances in miles, according to Google map:

4

C MV PA SC SV
C 0 7 12 7 4

MV 0 8 9 4
PA 0 14 10
SC 0 5
SV 0

The reader can verify that the triangle inequality is satisfied. If we run a minimum
spanning tree algorithm, we find the following tree of cost 21

PA

MV

 8

SV

 4

C

 4

SC

 5

This tells us that the optimum is at least 21 miles.

If we employ the algorithm from the last lecture, we perform a DFS which gives us
the cycle Palo Alto → Mountain View → Sunnyvale → Cupertino → Sunnyvale →
Santa Clara → Sunnyvale → Mountain View → Palo Alto, which has a length of 42
miles. After skipping the places that have already been visited, we get the cycle Palo
Alto → Mountain View → Sunnyvale → Cupertino → Santa Clara → Palo Alto,
whose length is 37 miles.

Today’s algorithm, instead, looks for a minimum cost perfect matching of the points
that have odd degree in the spanning tree, that is all the places except Moun-
tain View. A minimum cost perfect matching (there are two optimal solutions) is
{(PA, SV), (C, SC)} whose cost is 17 miles, 10 for the connection between Palo Alto
and Sunnyvale, and 7 for the one between Cupertino and Santa Clara.

This tells us that the TSP optimum must be at least 34, a stronger lower bound than
the one coming from the minimum spanning tree.

When we add the edges of the perfect matching to the edges of the spanning tree we

5

get the following graph, which is connected and is such that every vertex has even
degree:

PA MV
8

SV

10 4

C

4

SC

5

7

We can find an Eulerian cycle in the graph, and we find the cycle Palo Alto →
Mountain View → Sunnyvale → Santa Clara → Cupertino → Sunnyvale → Palo
Alto, whose length is 38 miles. After skipping Sunnyvale the second time, we have
the cycle Palo Alto → Mountain View → Sunnyvale → Santa Clara → Cupertino →
Palo Alto whose length is 36 miles.

PA

MV

8

C
12

SV 4

SC

5

7

In summary, yesterday’s algorithm finds a solution of 37 miles, and a certificate that
the optimum is at least 21. Today’s algorithm finds a solution of 36 miles, and a
certificate that the optimum is at least 34.

2 The Set Cover Problem

Definition 6 The Minimum Set Cover problem is defined as follows: an input of the
problem is a finite set X and a collection of subsets S1, . . . , Sm, where Si ⊆ X and⋃m

i=1 Si = X.

6

The goal of the problem is to find a smallest subcollection of sets whose union is X,
that is we want to find I ⊆ {1, . . . ,m} such that ∪i∈ISi = X and |I| is minimized.

For example, suppose that we want to assemble a team to work on a project, and
each of the person that we can choose to be on the team has a certain set of skills; we
want to find the smallest group of people that, among themselves, have all the skills
that we need. Say, concretely, that we want to form a team of programmers and that
we want to make sure that, among the team members, there are programmers who
can code in C, C++, Ruby, Python, and Java. The available people are Andrea, who
knows C and C++, Ben, who knows C++ and Java, Lisa, who knows C++, Ruby
and Python, and Mark who knows C and Java. Selecting the smallest team is the
same as a Minimum Set Cove problem in which we have the instance

X = {C,C + +,Ruby,Python, Java}

S1 = {C,C + +}, S2 = {C + +, Java},

S3 = {C + +,Ruby,Python}, S4 = {C, Java}

In which the optimal solution is to pick S3, S4, that is Lisa and Mark.

Although this is an easy problem on very small instances, it is an NP-hard problem
and so it is unlikely to be solvable exactly in polynomial time. In fact, there are bad
news also about approximation.

Theorem 7 Suppose that, for some constant ε > 0, there is an algorithm that, on
input an instance of Set Cover finds a solution whose cost is at most (1 − ε) · ln |X|
times the optimum; then every problem in NP admits a randomized algorithm running
in time nO(log log n), where n is the size of the input.

If, for some constant c, there is a polynomial time c-approximate algorithm, then
P = NP.

The possibility of nearly-polynomial time randomized algorithms is about as unlikely
as P = NP, so the best that we can hope for is an algorithm providing a ln |X| factor
approximation.

A simple greedy approximation provides such an approximation.

Consider the following greedy approach to finding a set cover:

• Input: A set X and a collection of sets S1, . . . , Sm

• I := ∅

• while there is an uncovered element, that is an x ∈ X such that ∀i ∈ I.x 6∈ Si

7

– Let Si be a set with the largest number of uncovered elements

– I := I ∪ {i}

• return I

To work out an example, suppose that our input is

X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}

S1 = {x1, x2, x7, x8}

S2 = {x1, x3, x4, x8, x10}

S3 = {x6, x3, x9, x10}

S4 = {x1, x5, x7, x8}

S5 = {x2, x3, x4, x8, x9}

The algorithm will pick four sets as follows:

• At the first step, all the elements of X are uncovered, and the algorithm picks
S2, which is the set that covers the most elements (five);

• At the second step, there are five remaining uncovered elements, and the best
that we can do is to cover two of them, for example picking S1;

• At the third step there remain three uncovered elements, and again the best we
can do is to cover two of them, by picking S3;

• At the fourth step only x5 remains uncovered, and we can cover it by picking
S4.

As with the other algorithms that we have analyzed, it is important to find ways to
prove lower bounds to the optimum. Here we can make the following easy observa-
tions: at the beginning, we have 10 items to cover, and no set can cover more than 5
of them, so it is clear that we need at least two sets. At the second step, we see that
there are five uncovered items, and that there is no set in our input that contains
more than two of those uncovered items; this means that even the optimum solution
must use at least 5/2 sets to cover those five items, and so at least 5/2 sets, that is
at least 3 sets, to cover all the items.

In general, if we see that at some point there are k items left to cover, and that
every set in our input contains at most t of those items, it follows that the optimum
contains at least k/t sets. These simple observations are already sufficient to prove
that the algorithm is (ln |X|+O(1))-approximate.

8

We reason as follows. Let X,S1, . . . , Sm be the input to the algorithm, and let
x1, . . . , xn be an ordering of the elements of X in the order in which they are covered
by the algorithm. Let ci be the number of elements that become covered at the same
time step in which xi is covered. Let opt be the number of sets used by an optimal
solution and apx be the number of sets used by the algorithm.

For every i, define

cost(xi) :=
1

ci
The intuition for this definition is that, at the step in which we covered xi, we had to
“pay” for one set in order to cover ci elements that were previously uncovered. Thus,
we can think of each element that we covered at that step as having cost us 1

ci
times

the cost of a set. In particular, we have that the total number of sets used by the
algorithm is the sum of the costs:

apx =
n∑

i=1

cost(xi)

Now, consider the items xi, . . . , xn and let us reason about how the optimum solution
manages to cover them. Every set in our input covers at most ci of those n − i + 1
items, and it is possible, using the optimal solution, to cover all the items, including
the items xi, . . . , xn with opt sets. So it must be the case that

opt ≥ n− i+ 1

ci
= (n− i+ 1) · cost(xi)

from which we get

apx ≤ opt ·

(
n∑

i=1

1

n− i+ 1

)
The quantity

n∑
i=1

1

n− i+ 1
=

n∑
i=1

1

n

is known to be at most lnn+O(1), and so we have

apx ≤ (lnn+O(1)) · opt

It is easy to prove the weaker bound
∑n

i=1
1
n
≤ dlog2 n + 1e, which suffices to prove

that our algorithm is O(log n)-approximate: just divide the sum into terms of the

form
∑2k+1−1

i=2k
1
i
, that is

9

1 +

(
1

2
+

1

3

)
+

(
1

4
+

1

5
+

1

6
+

1

7

)
+ · · ·

and notice that each term is at most 1 (because each term is itself the sum of 2k

terms, each ≤ 2−k) and that the whole sum contains at most dlog2 n+ 1e such terms.

3 Set Cover versus Vertex Cover

The Vertex Cover problem can be seen as the special case of Set Cover in which every
item in X appears in precisely two sets.

If G = (V,E) is an instance of Vertex Cover, construct the instance of Set Cover in
which X = E, and in which we have one set Sv for every vertex v, defined so that
Sv is the set of all edges that have v as an endpoint. Then finding a subcollection of
sets that covers all of X is precisely the same problem as finding a subset of vertices
that cover all the edges.

The greedy algorithm for Set Cover that we have discussed, when applied to the
instances obtained from Vertex Cover via the above transformation, is precisely the
greedy algorithm for Vertex Cover: the algorithm starts from an empty set of vertices,
and then, while there are uncovered edges, adds the vertex incident to the largest
number of uncovered edges. By the above analysis, the greedy algorithm for Vertex
Cover finds a solution that is no worse than (lnn+O(1)) times the optimum, a fact
that we mentioned without proof a couple of lectures ago.

10

	Better Approximation of the Traveling Salesman Problem
	The Set Cover Problem
	Set Cover versus Vertex Cover

