
Stanford University — CS261: Optimization Handout 1
Luca Trevisan January 4, 2011

Lecture 1

In which we describe what this course is about and give two simple examples of ap-
proximation algorithms

1 Overview

In this course we study algorithms for combinatorial optimization problems. Those
are the type of algorithms that arise in countless applications, from billion-dollar
operations to everyday computing task; they are used by airline companies to schedule
and price their flights, by large companies to decide what and where to stock in their
warehouses, by delivery companies to decide the routes of their delivery trucks, by
Netflix to decide which movies to recommend you, by a gps navigator to come up
with driving directions and by word-processors to decide where to introduce blank
spaces to justify (align on both sides) a paragraph.

In this course we will focus on general and powerful algorithmic techniques, and we
will apply them, for the most part, to highly idealized model problems.

Some of the problems that we will study, along with several problems arising in prac-
tice, are NP-hard, and so it is unlikely that we can design exact efficient algorithms
for them. For such problems, we will study algorithms that are worst-case efficient,
but that output solutions that can be sub-optimal. We will be able, however, to
prove worst-case bounds to the ratio between the cost of optimal solutions and the
cost of the solutions provided by our algorithms. Sub-optimal algorithms with prov-
able guarantees about the quality of their output solutions are called approximation
algorithms.

The content of the course will be as follows:

• Simple examples of approximation algorithms. We will look at approximation
algorithms for the Vertex Cover and Set Cover problems, for the Steiner Tree
Problem and for the Traveling Salesman Problem. Those algorithms and their
analyses will be relatively simple, but they will introduce a number of key
concepts, including the importance of getting upper bounds on the cost of an
optimal solution.

1

• Linear Programming. A linear program is an optimization problem over the
real numbers in which we want to optimize a linear function of a set of real
variables subject to a system of linear inequalities about those variables. For
example, the following is a linear program:

maximize x1 + x2 + x3

Subject to :
2x1 + x2 ≤ 2
x2 + 2x3 ≤ 1

(A linear program is not a program as in computer program; here programming
is used to mean planning.) An optimum solution to the above linear program
is, for example, x1 = 1/2, x2 = 1, x3 = 0, which has cost 1.5. One way to see
that it is an optimal solution is to sum the two linear constraints, which tells
us that in every admissible solution we have

2x1 + 2x2 + 2x3 ≤ 3

that is, x1 + x2 + x3 ≤ 1.5. The fact that we were able to verify the optimality
of a solution by summing inequalities is a special case of the important theory
of duality of linear programming.

A linear program is an optimization problem over real-valued variables, while
this course is about combinatorial problems, that is problems with a finite num-
ber of discrete solutions. The reasons why we will study linear programming
are that

1. Linear programs can be solved in polynomial time, and very efficiently in
practice;

2. All the combinatorial problems that we will study can be written as linear
programs, provided that one adds the additional requirement that the
variables only take integer value.

This leads to two applications:

1. If we take the integral linear programming formulation of a problem, we
remove the integrality requirement, we solve it efficient as a linear program
over the real numbers, and we are lucky enough that the optimal solution
happens to have integer values, then we have the optimal solution for our
combinatorial problem. For some problems, it can be proved that, in fact,
this will happen for every input.

2

2. If we take the integral linear programming formulation of a problem, we
remove the integrality requirement, we solve it efficient as a linear program
over the real numbers, we find a solution with fractional values, but then we
are able to “round” the fractional values to integer ones without changing
the cost of the solution too much, then we have an efficient approximation
algorithm for our problem.

• Approximation Algorithms via Linear Programming. We will give various ex-
amples in which approximation algorithms can be designed by “rounding” the
fractional optima of linear programs.

• Exact Algorithms for Flows and Matchings. We will study some of the most
elegant and useful optimization algorithms, those that find optimal solutions to
“flow” and “matching” problems.

• Linear Programming, Flows and Matchings. We will show that flow and match-
ing problems can be solved optimally via linear programming. Understanding
why will make us give a second look at the theory of linear programming duality.

• Online Algorithms. An online algorithm is an algorithm that receives its input
as a stream, and, at any given time, it has to make decisions only based on the
partial amount of data seen so far. We will study two typical online settings:
paging (and, in general, data transfer in hierarchical memories) and investing.

2 The Vertex Cover Problem

2.1 Definitions

Given an undirected graph G = (V, E), a vertex cover is a subset of vertices C ⊆ V
such that for every edge (u, v) ∈ E at least one of u or v is an element of C.

In the minimum vertex cover problem, we are given in input a graph and the goal is
to find a vertex containing as few vertices as possible.

The minimum vertex cover problem is very related to the maximum independent set
problem. In a graph G = (V, E) an independent set is a subset I ⊆ V of vertices such
that there is no edge (u, v) ∈ E having both endpoints u and v contained in I. In the
maximum independent set problem the goal is to find a largest possible independent
set.

It is easy to see that, in a graph G = (V, E), a set C ⊆ V is a vertex cover if and
only if its complement V −C is an independent set, and so, from the point of view of
exact solutions, the two problems are equivalent: if C is an optimal vertex cover for

3

the graph G then V − C is an optimal independent set for G, and if I is an optimal
independent set then V − I is an optimal vertex cover.

From the point of view of approximation, however, the two problems are not equiv-
alent. We are going to describe a linear time 2-approximate algorithm for minimum
vertex cover, that is an algorithm that finds a vertex cover of size at most twice the
optimal size. It is known, however, that no constant-factor, polynomial-time, approx-
imation algorithms can exist for the independent set problem. To see why there is no
contradiction (and how the notion of approximation is highly dependent on the cost
function), suppose that we have a graph with n vertices in which the optimal vertex
cover has size .9 · n, and that our algorithm finds a vertex cover of size n− 1. Then
the algorithm finds a solution that is only about 11% larger than the optimum, which
is not bad. From the point of view of independent set size, however, we have a graph
in which the optimum independent set has size n/10, and our algorithm only finds
an independent set of size 1, which is terrible

2.2 The Algorithm

The algorithm is very simple, although not entirely natural:

• Input: graph G = (V, E)

• C := ∅

• while there is an edge (u, v) ∈ E such that u 6∈ C and v 6∈ C

– C := C ∪ {u, v}

• return C

We initialize our set to the empty set, and, while it fails to be a vertex cover because
some edge is uncovered, we add both endpoints of the edge to the set. By the time
we are finished with the while loop, C is such that for every edge (u, v) ∈ E, either
u ∈ C or v ∈ C (or both), that is, C is a vertex cover.

To analyze the approximation, let opt be the number of vertices in a minimal vertex
cover, then we observe that

• If M ⊆ E is a matching, that is, a set of edges that have no endpoint in common,
then we must have opt ≥ |M |, because every edge in M must be covered using
a distinct vertex.

• The set of edges that are considered inside the while loop form a matching,
because if (u, v) and (u′, v′) are two edges considered in the while loop, and

4

(u, v) is the one that is considered first, then the set C contains u and v when
(u′, v′) is being considered, and hence u, v, u′, v′ are all distinct.

• If we let M denote the set of edges considered in the while cycle of the algorithm,
and we let Cout be the set given in output by the algorithm, then we have

|Cout| = 2 · |M | ≤ 2 · opt

As we said before, there is something a bit unnatural about the algorithm. Every
time we find an edge (u, v) that violates the condition that C is a vertex cover, we
add both vertices u and v to C, even though adding just one of them would suffice to
cover the edge (u, v). Isn’t it an overkill?

Consider the following alternative algorithm that adds only one vertex at a time:

• Input: graph G = (V, E)

• C := ∅

• while there is an edge (u, v) ∈ E such that u 6∈ C and v 6∈ C

– C := C ∪ {u}

• return C

This is a problem if our graph is a “star.” Then the optimum is to pick the center,
while the above algorithm might, in the worse case, pick all the vertices except the
center.

1

2

3

4

5

6

Another alternative would be a greedy algorithm:

5

• Input: graph G = (V, E)

• C := ∅

• while C is not a vertex cover

– let u be the vertex incident on the most uncovered edges

– C := C ∪ {u}

• return C

The above greedy algorithm also works rather poorly. For every n, we can construct
an n vertex graph where the optimum is roughly n/ ln n, but the algorithm finds
a solution of cost roughly n − n/ ln n, so that it does not achieve a constant-factor
approximation of the optimum. We will return to this greedy approach and to these
bad examples when we talk about the minimum set cover problem.

3 The Metric Steiner Tree Problem

In the Steiner Tree problem, we are given a set of required points R and a set of optional
points S, along with a distance function d : (R ∪ S)× (R ∪ S)→ R≥0. The distance
function is a metric, that is, for every two points x, y we have d(x, y) = d(y, x), and
for every three points x, y, z we have the triangle inequality

d(x, y) ≤ d(x, z) + d(z, y)

Our goal is to find a tree T = (V, E) that spans all the required points, and possibly
uses some of the optional points, that is, R ⊆ V ⊆ R ∪ S, and such that the total
length of the tree

∑
(x,y)∈E

d(x, y)

is minimized.

This problem is very similar to the minimum spanning tree problem, which we know
to have an exact algorithm that runs in polynomial (in fact, nearly linear) time. In
the minimum spanning tree problem, we are given a weighted graph, which we can
think of as a set of points together with a distance function (which might not satisfy
the triangle inequality), and we want to find the tree of minimal total length that
spans all the vertices. The difference is that in the minimum Steiner tree problem we
only require to span a subset of vertices, and other vertices are included only if they
are beneficial to constructing a tree of lower total length.

6

We consider the following very simple approximation algorithm: run a minimum
spanning tree algorithm on the set of required vertices, that is, find the best possi-
ble tree that uses none of the optional vertices. Next time we will prove that this
algorithm achieves a factor of 2 approximation.

7

	Overview
	The Vertex Cover Problem
	Definitions
	The Algorithm

	The Metric Steiner Tree Problem

