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Problem Set 2

Solution

1. [50/100]

Solution:

We define a value s is “good” if

�
0 ≤ sr mod M ≤ r
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�
M − r

2
≤ sr mod M ≤ M − 1

�
.

The probability of each “good s” is give by
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2. [50/100]

Solution:

Note that �

x∈{0,1}n
f(x)|x� = 1

2n−k

�

z∈{0,1}n−k

|0�⊗k|z�.

Applying the Hadamard transform,
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y∈{0,1}k
|y�|0�⊗n−k

=
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s

f̂(s)|s� =: q

Thus, f̂(s) can be found as

f̂(s) =

�
1√
2k

if last n− k bits of s are all zeros

0 otherwise

Hence when we measure q, we attain the uniform distribution over the elements

{0, 1}n, of which the last n−k bits are zeros, and the probability of any of such

s is given by
��f̂(s)

��2 = 1
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