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Problem Set 2

Solution

1. [30/100] We proved that every unitary operation can be realized by a quantum
circuit that uses only UCNOT gates and 1-qubit gates. Show that it is not true
that every bijective boolean function can be computed by a classical circuit that
uses only CNOT gates and NOT gates.

[Hint: use linear algebra over the field F2.]

Solution:

There are many possible approaches. The simplest one is to prove that the
Toffoli gate

(a, b, c) → (a, b, ab XOR c)

cannot be realized using NOT and CNOT. In a NOT gate, the transformation
is

x → (1 XOR x)

and in a CNOT gate it is

(a, b) → (a, a XOR b).

So both gates are affine transformations over F2(Galois field of two elements),
meaning that each bit of the output is an XOR of a subset of bits of the input
and, possibly, the constant 1. A combination of affine transformation is still
affine, so in a circuit made of CNOT gates and NOT gates each bit of the
output is an affine function of the bits of the input.

It remains to prove that a Toffoli gate is not an affine transformation. Note
that if the Toffoli gate were affine then the transformation a, b → ab would be
affine, while it is a quadratic transformation and so it cannot be affine.
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Example :
If the Toffoli gate were affine, we could write (all operations in F2):

ab+ c = xa+ yb+ zc+ w

for some bits x, y, z, w. Now, if we set a = b = c = 0, we get w = 0. If we set
a = 0, b = 1, c = 0, we have y = 0. If we set a = 1, b = 1 + x, c = 0, we have
1 + x = x ,which is a contradiction. �
Another possible solution: [the number of bijective function using CNOT
and NOT gates (= 2n

2+n)] < [all possible number of bijective boolean functions
(= (2n)!)], for large n

2. [40/100] Let us say that an efficient experiment on a quantum state is a poly-
nomial time quantum computation, followed by a measurement, followed by a
polynomial time classical computation on the outcome of the measurement.

For a binary string x = (x1, . . . , xn), let mod3(x) be 0 if
�

i
xi ≡ 0 (mod 3) and

let mod3(x) be 1 otherwise. Show that there is an efficient experiment that dis-
tinguishes with high probability the quantum state quniform := 1

2n/2

�
x∈{0,1}n |x�

from the quantum state qmod3 :=
1

2n/2

�
x∈{0,1}n(−1)mod3(x)|x�. That is, there is

an efficient experiment that outputs YES with higher probability (by an addi-
tive constant term) than when executed on quniform.

Solution:

Suppose we apply the Hadamard transform to a quantum state

�

x

f(x)|x�.

Noting that in general, for every x ∈ {0, 1}n,

H⊗n|x� = 1

2n/2

�

s∈{0,1}n
(−1)x1s1+···+xnsn |s�,

we have

H⊗n

��

x

f(x)|x�
�
=

1

2n/2

�

x∈{0,1}n

�

s∈{0,1}n
f(x)(−1)x1s1+···+xnsn |s�.

or simply, �

s

f̂(s)|s�.
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In this new state, the amplitude f̂(00 . . . 0) of the all-zero string is

1

2n/2

�

x∈{0,1}n
f(x).

Thus, if we conduct a measurement, after applying the Hadamard transform,
the state |00 . . . 0� will be measured with probability

1

2n

���
�

x∈{0,1}n
f(x)

���
2
.

Now, consider quniform as an initial quantum state. After the Hadamard trans-
form, we will measure |00 . . . 0� with probability

1

2n

���
�

x∈{0,1}n
f(x)

���
2
=

1

2n

���
�

x∈{0,1}n

1

2n/2

���
2
=

1

2n

���2n
1

2n/2

���
2
= 1.

(Surely, this result can be obtained from direct calculation: if we apply the
Hadamard transform to a quantum state quniform := 1

2n/2

�
x∈{0,1}n |x�, we get

H⊗n

�
1

2n/2

�
x∈{0,1}n |x�

�
=

n�
i=1

H
�

1√
2
[|0�+ |1�]

�
=

n�
i=1

|0� = |00 . . . 0�).

Thus, we see that if we start from quniform, then we will measure |00 . . . 0� with
probability 1, and if we start from other states, we will measure |00 . . . 0� with
probability 0.

Next, consider qmod3 as an initial quantum state. After the Hadamard transform,
we will measure |00 . . . 0� with probability

1

2n

���
�

x∈{0,1}n
f(x)

���
2

=
1

2n

���
�

x∈{0,1}n

1

2n/2
(−1)mod3(x)

���
2
=

1

22n

���
�

x∈{0,1}n
(−1)mod3(x)

���
2

=
�
P
��

i

xi(mod3) = 0
�
− P

��

i

xi(mod3) �= 0
��2

=
1

9
+ o(1)

where the probabilities are over a random x ∈ {0, 1}2. In short, if we start from
qmod3, we can claim the probability of measuring |00 . . . 0� is at most

1

9
+ o(1).

Hence, our experiment has distinguishing probability

8

9
+ o(1).

3



The claim about the probabilities can be proved, for example, by considering a
three-state Markov chain that has the state space {0, 1, 2}, that starts at time
0 in the state 0, and whose state Xt at time t is equal to Xt−1 with probability
1/2 and to Xt−1 + 1(mod3) with probability 1/2. The chain is connected and
aperiodic, so it has a constant mixing time. After n steps, Xn is 1/2Ω(n)-close to
the uniform distribution. But the distribution of Xn is precisely the distribution
of

�
i
xi

3. [30/100] Consider a quantum circuit that, on an n-qubit input, first applies an
Hadamard gate to each input bit, and applies quantum Fourier transform over
Z2n . If we give the state |00 . . . 0� as an input to the circuit, what is the output
state?

Solution:

• Apply the Hadamard transform:

H⊗n|00 . . . 0� =
n�

i=1

�
1√
2

�
|0�+ |1�

�
�
=

1

2n/2

�

x∈{0,1}n
|x� = 1

2n/2

2n−1�

j=0

|j�.

• Apply the quantum Fourier transform. The Fourier coefficient of all-zero
state:

1

2n

2n−1�

k=0

e2πik0/2
n
= 1.

which implies that the output state is |00 . . . 0�.
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