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Problem Set 5

Updated Dec 2, 2012: in Problem 3 the density matrix is assumed to have real entries.

This problem set is due on Thursday, December 6.

1. 10/100 Compute the density matrix of the following mixed one-qubit quantum
state: with probability 1/2 we have 1√

2
(|0〉 + |1〉) and with probability 1/2 we

have 1√
2
(|0〉 − |1〉)

2. 20/100 Find an operator sum representation of the following process: given a
two-qubit state, apply the Hadamard transform to the first qubit, then measure
the second qubit.

3. 20/100 Let us denote by {(p1, |q1〉), . . . , (pk, |qk〉)} a mixed quantum state in
which the pure quantum state |qi〉 occurs with probability pi.

If {(p1, |q1〉), . . . , (pk, |qk〉)} and {(p′1, |q′1〉), . . . , (p′h, |q′h〉)} are two mixed quan-
tum states with the same density matrix

M =
k∑

i=1

pi|qi〉〈qi| =
h∑

i=1

p′i|q′i〉〈q′i|

then the outcome of any experiment (where by experiment we mean a uni-
tary transformation followed by a, possibly partial, measurement) has the same
distribution in both states.

Prove that the converse is also true for one-qubit states whose density ma-
trices has all real entries (it is true for any number of qubits and complex
entries – the restrictions are to make the problem easier), that is, prove that if
{(p1, |q1〉), . . . , (pk, |qk〉)} and {(p′1, |q′1〉), . . . , (p′h, |q′h〉)} are two one-qubit mixed
quantum states with different real density matrices

k∑
i=1

pi|qi〉〈qi| 6=
h∑

i=1

p′i|q′i〉〈q′i|

1



Then there is an experiment whose outcome has a different distribution for the
first mixed state than for the second mixed state.

[Hint: either just measure the state or apply a Hadamard transform and then
measure the state]

4. 50/100 Consider the code

|0〉 → 1√
8

(|0〉+ |1〉)⊗ (|0〉+ |1〉)⊗ (|0〉+ |1〉)

|1〉 → 1√
8

(|0〉 − |1〉)⊗ (|0〉 − |1〉)⊗ (|0〉 − |1〉)

which protects against at most one phase flip error.

Prove that the code does not protect against one bit flip error.

[Hints: call E(|q〉) the three-qubit encoding of the 1-qubit quantum state q.
The fact that the code protects from phase flip errors implies that for every
two different one-qubit quantum states |q1〉 and |q2〉 and for every two arbitrary
three qubits channels C1 and C2 (where C1 and C2 are both unitary operators
which are either the identity or the tensor of two one-qubit identity matrix and
a phase flip matrix) we have that C1 · E(|q1〉) 6= C2 · E(|q2〉).
To prove that correction of one bit flip error is not always possible, you have
to show that there are two different quantum states |q1〉 and |q2〉, and two
channels C1 and C2 (each being either the tensor of two one-qubit identity

matrices and one bit-flip matrix

(
0 1
1 0

)
or the 3-qubit identity matrix) such

that C1 · E(|q1〉) 6= C2 · E(|q2〉).
It might be helpful to first think about the (closely related) problem of showing
that the code |0〉 → |000〉, |1〉 → |111〉 does not protect against one phase flip
error.]
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