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Problem Set 3

This version has some corrections in problem 1, posted October 23, 2012

This problem set is due on Thursday, October 25, by 2:15pm. You can either hand
it in class or email a pdf to Joongyeub.

1. [50/100] At the end of the third step we have the quantum state
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where f(x0) is the value measured at the second step and ω = e−2πi/M , and
recall that we defined a value s ∈ {0, . . . ,M − 1} to be “good” if(
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)
Suppose that we are running the period-finding algorithm with M = 215 and
r = 100, and that at the second step we measured f(x0) where x0 = 3. Using
the computational mathematics package or the programming language of your
choice, find all the good s ∈ {0, . . . , 215 − 1} and compute the absolute value
of the amplitude-squared (i.e. the probability of being measured) of each good
s. Print out the list of good s and their probability and the code you used to
generate them.

2. [50/100] It follows from the analysis of the period-finding algorithm that if
Ω := {0, . . . ,M − 1}, r is a divisor of M , and

∑
x∈Ω

f(x)|x〉

is a uniform superposition of the x that are multiples of r (that is, f(x) =
√
r/M

if x is a multiple of r, and f(x) = 0 otherwise), then measuring the quantum
state
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∑
s∈Ω
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gives us the uniform distribution over s that are multiples of M/r (that is,
|f̂(s)|2 = 1/r is s is multiple of M/r and f̂(s) = 0 otherwise). on-zero precisely
on the multiples of M/r.

In this problem we prove a “Boolean version” of the above fact. Let Ω := {0, 1}n
and suppose that

∑
x∈{0,1}n

f(x)|x〉

is a quantum state that is a uniform superposition of the strings x that have
zeroes in the first k coordinates (that is f(x) = 1/

√
2n−k if the first k bits of x

are zero, and f(x) = 0 otherwise), and consider the quantum state

q :=
∑

s∈{0,1}n
f̂(s)|s〉

where f̂ is the Hadamard transform of f . Compute the amplitudes f̂(s) for
every s, and describe the probability distribution of outcomes that we get by
measuring q.
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