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Midterm

This exam is due in class on November 8. There is no late policy for the midterm.
Start early.

Some edits to the notes at the end on 10/30/2012, 8pm

Work with m ≥ 3 in Problem 3. 11/06/2012, 11am

1. [10/100] Suppose that you are interested in constructing a 1-qubit unitary op-
erator U with the properties that

U |0〉 = −|1〉

U ·
(

1√
2
|0〉+

1√
2
|1〉
)

= |0〉

Does such a unitary operator exist? If so describe it as a 2× 2 unitary matrix,
if not give an example of a quantum state which, according to the above rules,
is mapped to something that is not a valid quantum state.

2. [30/100] (In this problem, all operations are in the vector space Fn
2 . See the

note at the end of the exam if you are not familiar with linear algebra in finite
fields.)

Let f : {0, 1}n → {0, 1}n be a function such that there exists distinct and
non-zero a, b ∈ {0, 1}n with the property that for all x, y ∈ {0, 1}n we have

f(x) = f(y)⇔ ∃α, β ∈ {0, 1}.y = x+ αa+ βb

Note that this is a “two-dimensional generalization” of the assumption in Si-
mon’s algorithm.

Suppose that we run Simon’s algorithm on f :

(a) [20/100] Describe the distribution of outcomes of the measurement at the
last step
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(b) [10/100] Show that by running the algorithm O(n) times it is possible to
reconstruct the set {a, b, a+ b}.

3. [30/100] Let M = 2m be a power of two, m ≥ 3. The period-finding algorithm
of lecture 8 is able to recover the period r of a function f : {0, . . . ,M − 1} →
{0, . . . ,M −1} if r ≤

√
M , but for much larger periods the measurement at the

last step does not always give enough information to accurately reconstruct r.
In some cases, however, one can still get non-trivial information about r even
for very large r.

Show that there is an algorithm that runs one iteration of the period-finding
algorithm and, after seeing the outcome of the measurement at Step 4 decides
whether to accept or reject and:

(a) if f has period r = M/2, then the algorithm accepts with probability 1

(b) there is a constant p < 1 (independent of M) such that if f has period
r = M/2− 1, then the algorithm accepts with probability ≤ p.

4. [30/100] Use Grover’s algorithm to prove that the 3-coloring problem can be
solved in time O(2n/2 · nO(1)) on a quantum computer, where n is the number
of vertices.

[Hint: show that a valid 3-coloring can be encoded using n+O(1) bits.]

Linear Algebra mod 2. Fn
2 is the n-dimensional vector space over the field F2.

The field F2 has elements {0, 1} and operations of addition and multiplication mod 2.
Linear algebra in Fn

2 works mostly in the same way as in Rn: a vector x = (x1, . . . , xn)
is simply an n-bit string; the sum of two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn)
is x + y := (x1 + y1 mod 2, . . . , xn + yn mod 2); the multiplication of a vector x =
(x1, . . . , xn) by a scalar α ∈ {0, 1} is αx := (αx1, . . . , αxn); a linear combination
of vectors x(1), . . . , x(k) using coefficients α1, . . . , αk is α1x

(1) + · · · + αkx
(k); a linear

combination is non-trivial if not all coefficients are zero, and a collection of vectors is
linearly independent if all their non-trivial linear combinations are non-zero; k linearly
independent vectors span a k-dimensional subspace, and a k-dimensional subspace
has precisely 2k elements; k linearly independent homogeneous linear equations over
n variables have precisely 2n−k solutions, forming a (n−k)-dimensional subspace, and
so on. One thing to pay attention to: if, by analogy with linear algebra over the reals,
you try to define an inner product as 〈x, y〉 :=

∑
i xiyi mod 2 then what you get is

not an inner product, because you can have non-zero vectors v, for example v = (1, 1)
such that 〈v, v〉 = 0, and you can have vectors v1, . . . , vk such that 〈vi, vj〉 = 0 for all
i 6= j even though the vectors vi are not linearly independent, for example, consider
(1, 1, 1, 1), (1, 1, 0, 0), (0, 0, 1, 1).
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