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Lecture 13

In which we prove a lower bound for quantum search algorithms via the polynomial
method.

We want to show that a quantum algorithm that, given a function f : {0,1}" — {0, 1},
finds a solution z such that f(x) = 1 if one exists, must have running time at least
Q(v/2"), provided that access to the function f() is only given to the algorithm via a
unitary transformation Uy over n+ 1 qubits such that Us|z,b) = |2)|b® f(x)). In the
last lecture we considered the case in which f is “given” via a unitary transformation
Uy such that Ug|z) = (—1)/@|z). The result that we prove today is only stronger,
because from a unitary transformation U; like the one we consider today we can
derive a unitary transformation like the one considered in the last lecture as

Uf.(1n®(é _01)>Uf

Theorem 1 (Main) Let A be a quantum algorithm that given in input |0---0), per-
forms unitary operations independent of f and applies Uy to its first n + 1 qubits a
total of at most T times, and, at the end, outputs 1 with probability > 90% if there
is an x such that f(x) =1 and outputs 0 with probability > 90% if for all x we have
flz) =0.

Then T > Q(v/27).

Again, this is somewhat stronger than we proved in the last lecture, in which we
required the algorithm to output an x such that f(z) = 1 with probability > 90%if
such an z exists. Indeed, such an algorithm can be easily converted to an algorithm
that satisfies the assumptions of the theorem.

The main theorem is proved in the following way.

Lemma 2 Suppose that we have a quantum algorithm as in the assumption of the
Main Theorem.

Then there is an N -variate real polynomial p(x1,...,xx), N = 2", of degree 2T such
that 0 < p(0,---,0) < .1 and for all (by,...,by) € {0,1}N — {(0,---,0} we have



Lemma 3 Let p(xy,...,zN) be a real polynomial such that 0 < p(0,---,0) < .1 and
for all (by,...,bx) € {0,1}Y —{(0,---,0} we have .9 < p(by,...,by) < 1.

Then the degree of p is > Q(v/N).

1 Proof of Lemma 2
We first prove the following fact.

Lemma 4 If a quantum algorithm starts in the state |0---0) and alternates applica-
tions of unitary transformations independent of f and applications of Uy, then, after
t applications of f, each amplitude of the state of the algorithm is a polynomial of
degree t in the values f(x).

This is proved by induction on ¢. When ¢ = 0, the amplitudes are constant indepen-
dent of f, that is, polynomials of degree 0 in the values of f(). For the inductive step,
if |a) is a quantum state

la) = Z Ay bw|T, b, w)

z,b,w

and each amplitude a,p,, is a polynomial of degree ¢ in the values of f(), then the
amplitude of z, b, w in Uf|a) is

(1= f(2)) - awpw + f(2) - Qz1-bw
which is a polynomial of degree ¢ + 1 in the values of f.

Now, let S be the set of final accepting states of the algorithm, and let a, be the
amplitude of each possible final state z. Then each a, is a polynomial of degree at
most 7" in the values f(z), and the probability that the algorithm accepts is

2

p(f(l’l), SR (xQ")) =

S

z€S

where p() is a polynomial of degree at most 27, and 1, ..., xo» is an enumeration of
the elements of {0,1}". Note that, for every real-valued input, p has a real value, so
p is a polynomial with real coefficients, and that p satisfies all the properties of the
conclusion of Lemma 2.



2 Proof of Lemma 3

First we prove the following fact.

Lemma 5 Letp be a polynomial of degree d as in the assumptions of Lemma 3. Then
there is a univariate polynomial q of degree at most d such that 0 < ¢(0) < .1 and for
each i € {1,..., N} we have .9 < q(i) < 1.

ProOOF: First of all, we can assume without loss of generality that p is a multilinear
polynomial, that is, every variable appears with degree at most one in each monomial.
This is because the properties that we assume about p are about inputs in {0, 1}",
and if we replace every occurrence of z¥ with k > 2 by x;, we do not change the value
of p on such inputs. Define now the symmetrization of p as

_ 1
P(%, e >$N) = Nl ZP(%(U, e ,%(N))

This is still a multilinear polynomial of degree at most d, and we have that 0 <
p(0,...,0) < .landforall (by,...,bx) € {0, 1}¥—{(0,...,0)},.9 <D(by,...,by) < 1.
Furthermore, p is a constant plues a linear combination of symmetric polynomials of
degree at most d, where the symmetric polynomial of degree k > 1 is

sk(xy, ..., xy) = Z sz

SC{1,..,N},|S|=k €S

the sum of all degree & multilinear monomial. (Notice that each monomial of degree
k of p becomes a multiple of s; in p.)

The next observation is that

Claim 6 For each k > 1, there is a univariate polynomial gy of degree k such that
for all boolean inputs (by,...,by) € {0,1}" we have si(by,...,bn) = qr(by + -+ by).

This can be proved by induction on k: the base case k = 1 is trivial. Assuming we
have the statement up to k — 1, consider the expansion of (z; + -+ - + z,,)* and then
repeatedly apply the equation 22 = z to the expansion: we get a polynomial that
is equal to s; plus a linear combination of the symmetric polynomials sq,..., sg_1.
Each of the latter polynomials can be written (for inputs in {0, 1}") as a polynomial
of degree < k —11in (), x;), and so overall we have written s; as a polynomial of
degree < kin (), x;).

This means that we can find a univariate polynomial g of degree d such that for every
(b1, ..., by) € {0, 1} we have

q (Zb) =5(by,...,by)

3



and ¢ satisfies the conclusions of the lemma. [J

We then derive Lemma 3 by applying the following fact to the univariate polynomial
q of the previous lemma.

Lemma 7 Let g be a univariate real polynomial of degree d such that for every integer
i €{0,..., N} we have by < q(i) < by, and let ¢ := sup,¢p Ny |¢'(2)|, where ¢’ is the

derivative of q. Then
Q> —Ne
- bg — b1 +c

Because the polynomial ¢ of Lemma 5 is such that 0 < ¢(¢) < 1 for alli € {0,..., N},
and since ¢(0) < .1 and ¢(1) > .9 it must be that ¢'(z) > .8 for some x € [0, 1], and

so d > Q(vVN).

It remains to prove Lemma 7

3 Proof of Lemma 7

We use the following result of Markov, that we state without proof.

Theorem 8 Let q be a univariate polynomial of degree d such that Vx € [ay,as] we
have by < q(z) < by. Then, for all x € [ay, as),

by — by

/ <d2
O

Now let us consider a univariate polynomial ¢ as in the assumptions of Lemma 7.
Then for each x € [0, N| we have

bl—gﬁfﬂx)ﬁbz—l-f

2
Because the value of ¢ at a point z in the interval [i,i 4+ 1/2] for i =0,...,N — 1 is
: ‘ . . c
q(2) = q(i) +/ ¢(@)dr > q(i) —c- (¢ =i) 2 b — 3

o) =a)+ [ e <l o) <t

and applying Markov’s theorem we have
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