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Lecture 13

In which we prove a lower bound for quantum search algorithms via the polynomial
method.

We want to show that a quantum algorithm that, given a function f : {0, 1}n → {0, 1},
finds a solution x such that f(x) = 1 if one exists, must have running time at least
Ω(
√

2n), provided that access to the function f() is only given to the algorithm via a
unitary transformation Uf over n+ 1 qubits such that Uf |x, b〉 = |x〉|b⊕f(x)〉. In the
last lecture we considered the case in which f is “given” via a unitary transformation
Uf such that Uf |x〉 = (−1)f(x)|x〉. The result that we prove today is only stronger,
because from a unitary transformation Uf like the one we consider today we can
derive a unitary transformation like the one considered in the last lecture as

Uf ·
(

In ⊗
(

1 0
0 −1

))
Uf

Theorem 1 (Main) Let A be a quantum algorithm that given in input |0 · · · 0〉, per-
forms unitary operations independent of f and applies Uf to its first n + 1 qubits a
total of at most T times, and, at the end, outputs 1 with probability ≥ 90% if there
is an x such that f(x) = 1 and outputs 0 with probability ≥ 90% if for all x we have
f(x) = 0.

Then T ≥ Ω(
√

2n).

Again, this is somewhat stronger than we proved in the last lecture, in which we
required the algorithm to output an x such that f(x) = 1 with probability ≥ 90%if
such an x exists. Indeed, such an algorithm can be easily converted to an algorithm
that satisfies the assumptions of the theorem.

The main theorem is proved in the following way.

Lemma 2 Suppose that we have a quantum algorithm as in the assumption of the
Main Theorem.

Then there is an N-variate real polynomial p(x1, . . . , xN), N = 2n, of degree 2T such
that 0 ≤ p(0, · · · , 0) ≤ .1 and for all (b1, . . . , bN) ∈ {0, 1}N − {(0, · · · , 0} we have
.9 ≤ p(b1, . . . , bN) ≤ 1.
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Lemma 3 Let p(x1, . . . , xN) be a real polynomial such that 0 ≤ p(0, · · · , 0) ≤ .1 and
for all (b1, . . . , bN) ∈ {0, 1}N − {(0, · · · , 0} we have .9 ≤ p(b1, . . . , bN) ≤ 1.

Then the degree of p is ≥ Ω(
√

N).

1 Proof of Lemma 2

We first prove the following fact.

Lemma 4 If a quantum algorithm starts in the state |0 · · · 0〉 and alternates applica-
tions of unitary transformations independent of f and applications of Uf , then, after
t applications of f , each amplitude of the state of the algorithm is a polynomial of
degree t in the values f(x).

This is proved by induction on t. When t = 0, the amplitudes are constant indepen-
dent of f , that is, polynomials of degree 0 in the values of f(). For the inductive step,
if |a〉 is a quantum state

|a〉 =
∑
x,b,w

ax,b,w|x, b, w〉

and each amplitude ax,b,w is a polynomial of degree t in the values of f(), then the
amplitude of x, b, w in Uf |a〉 is

(1− f(x)) · ax,b,w + f(x) · ax,1−b,w
which is a polynomial of degree t + 1 in the values of f .

Now, let S be the set of final accepting states of the algorithm, and let az be the
amplitude of each possible final state z. Then each az is a polynomial of degree at
most T in the values f(x), and the probability that the algorithm accepts is

p(f(x1), . . . , (x2n)) =

∣∣∣∣∣∑
z∈S

az

∣∣∣∣∣
2

where p() is a polynomial of degree at most 2T , and x1, . . . , x2n is an enumeration of
the elements of {0, 1}n. Note that, for every real-valued input, p has a real value, so
p is a polynomial with real coefficients, and that p satisfies all the properties of the
conclusion of Lemma 2.
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2 Proof of Lemma 3

First we prove the following fact.

Lemma 5 Let p be a polynomial of degree d as in the assumptions of Lemma 3. Then
there is a univariate polynomial q of degree at most d such that 0 ≤ q(0) ≤ .1 and for
each i ∈ {1, . . . , N} we have .9 ≤ q(i) ≤ 1.

Proof: First of all, we can assume without loss of generality that p is a multilinear
polynomial, that is, every variable appears with degree at most one in each monomial.
This is because the properties that we assume about p are about inputs in {0, 1}n,
and if we replace every occurrence of xki with k ≥ 2 by xi, we do not change the value
of p on such inputs. Define now the symmetrization of p as

p(x1, . . . , xN) =
1

N !

∑
π

p(xπ(1), . . . , xπ(N))

This is still a multilinear polynomial of degree at most d, and we have that 0 ≤
p(0, . . . , 0) ≤ .1 and for all (b1, . . . , bN) ∈ {0, 1}N−{(0, . . . , 0)}, .9 ≤ p(b1, . . . , bN) ≤ 1.
Furthermore, p is a constant plues a linear combination of symmetric polynomials of
degree at most d, where the symmetric polynomial of degree k ≥ 1 is

sk(x1, . . . , xN) :=
∑

S⊆{1,...,N},|S|=k

∏
i∈S

xi

the sum of all degree k multilinear monomial. (Notice that each monomial of degree
k of p becomes a multiple of sk in p.)

The next observation is that

Claim 6 For each k ≥ 1, there is a univariate polynomial qk of degree k such that
for all boolean inputs (b1, . . . , bN) ∈ {0, 1}n we have sk(b1, . . . , bN) = qk(b1 + · · · bn).

This can be proved by induction on k: the base case k = 1 is trivial. Assuming we
have the statement up to k − 1, consider the expansion of (x1 + · · ·+ xn)k and then
repeatedly apply the equation x2 = x to the expansion: we get a polynomial that
is equal to sk plus a linear combination of the symmetric polynomials s1, . . . , sk−1.
Each of the latter polynomials can be written (for inputs in {0, 1}n) as a polynomial
of degree ≤ k − 1 in (

∑
i xi), and so overall we have written sk as a polynomial of

degree ≤ k in (
∑

i xi).

This means that we can find a univariate polynomial q of degree d such that for every
(b1, . . . , bN) ∈ {0, 1}N we have

q

(∑
i

bi

)
= p(b1, . . . , bN)
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and q satisfies the conclusions of the lemma. �

We then derive Lemma 3 by applying the following fact to the univariate polynomial
q of the previous lemma.

Lemma 7 Let q be a univariate real polynomial of degree d such that for every integer
i ∈ {0, . . . , N} we have b1 ≤ q(i) ≤ b2, and let c := supx∈[0,N ] |q′(x)|, where q′ is the
derivative of q. Then

d ≥
√

Nc

b2 − b1 + c

Because the polynomial q of Lemma 5 is such that 0 ≤ q(i) ≤ 1 for all i ∈ {0, . . . , N},
and since q(0) ≤ .1 and q(1) ≥ .9 it must be that q′(x) ≥ .8 for some x ∈ [0, 1], and
so d ≥ Ω(

√
N).

It remains to prove Lemma 7

3 Proof of Lemma 7

We use the following result of Markov, that we state without proof.

Theorem 8 Let q be a univariate polynomial of degree d such that ∀x ∈ [a1, a2] we
have b1 ≤ q(x) ≤ b2. Then, for all x ∈ [a1, a2],

|q′(x)| ≤ d2 · b2 − b1

a2 − a1

Now let us consider a univariate polynomial q as in the assumptions of Lemma 7.
Then for each x ∈ [0, N ] we have

b1 −
c

2
≤ q(x) ≤ b2 +

c

2

Because the value of q at a point z in the interval [i, i + 1/2] for i = 0, . . . , N − 1 is

q(z) = q(i) +

∫ x

i

q′(x)dx ≥ q(i)− c · (x− i) ≥ b1 −
c

2

q(z) = q(i) +

∫ x

i

q′(x)dx ≤ q(i) + c · (x− i) ≤ b2 +
c

2

and applying Markov’s theorem we have

c ≤ d2 · b2 − b1 + c

N
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