
Stanford University — CS259Q: Quantum Computing Handout 10
Luca Trevisan October 25, 2012

Lecture 10

In which we present a polynomial time quantum algorithm for the discrete logarithm
problem.

1 The Discrete Log Problem

If p is a prime and g is a generator of the multiplicative group Z∗p, then the modular
exponentiation function

x→ gx mod p

is a bijection of Z∗p to Z∗p. The discrete log problem is the problem of inverting this
mapping, that is, given a prime p, a generator g of Z∗p and an element z ∈ Z∗p, find
the unique r, 0 ≤ r ≤ p− 2, such that gr ≡ z (mod p).

An efficient algorithm for the discrete log problem can be used to break several public-
key cryptosystems whose design is based on having (p, g, gx·y mod p) as a private key,
where p is a properly chosen prime, g is a generator of Z∗p, and x, y are randomly
chosen, while the public key is (p, g, gx mod p, gy mod p).

The discrete log problem can be formulated for every group G. Once the group is
fixed, or a description is given, an input to the problem are two elements a, z ∈ G,
and the goal is to find an integer r such that ar = z, where ar means a × a × · · · a
r times and × is the group operation. An algorithm for this more general problem
breaks public-key cryptosystems based on elliptic curves.

In this lecture we describe a polynomial time quantum algorithm for the discrete
logarithm problem in Z∗p, but the algorithm can be adapted to work in any Abelian
group. (The groups arising in elliptic curves cryptographic constructions are Abelian.)

2 A Fourier Transform for Bivariate Functions

We briefly describe a theory of discrete Fourier transforms for functions with two
inputs. If M is a positive integer, the functions

1

f : {0, . . . ,M − 1} × {0, . . . ,M − 1} → C
form anM2-dimensional vector space. In the univariate case of functions f : {0, . . . ,M−
1} → C, we derived the Fourier transform by defining an orthonormal basis and writ-
ing f as a linear combination of basis functions. Similarly, we will now define M2

orthonormal functions and write each bivariate function as a linear combination of
basis functions.

A general principle is that if v1, . . . , vk are an orthonormal vectors, then the collection
of all the tensor products vi ⊗ vj is a set of k2 orthonormal vectors. Consider now

the functions χs(x) = 1√
M
e−2πi 1

M
·s·x; we prove that they are orthonormal, and so the

collection of their tensor products

χs1,s2(x, y) :=
1

M
e−2πi 1

M
·(s1x+s2y)

is a collection of M2 orthornomal functions, and thus it is an orthonormal basis for
the set of functions

f : {0, . . . ,M − 1} × {0, . . . ,M − 1} → C

Each such function can be written as a linear combination

f(x, y) =
∑
s1,s2

f̂(s1, s2) · χs1,s2(x, y)

where the coefficients of the linear combination (the Fourier coefficients of f) can be
computed as

f̂(s1, s2) = 〈f, χs1,s2〉 =
1

M

∑
x,y

f(x, y)e2πi
1
M
·(s1x+s2y)

The transformation from the values f(x, y) to the coefficients f̂(s1, s2) is a change of
orthonormal basis, and so it is unitary linear transformation, and so if

∑
x,y

f(x, y)|x, y〉

is a quantum state, then ∑
s1,s2

f̂(s1, s2)|s1, s2〉

is also a quantum state, and the transformation from the former to the latter is the
quantum (bivariate) Fourier transform; it is easy to see that this can be done in
quantum polynomial time if M = 2m is a power of 2 by first applying the standard
quantum Fourier transform to x and then to y.

2

3 A Generalized Period Finding Algorithm

Given a prime p, a generator g of Z∗p and an element a = gr mod p of Z∗p, define the
function

F (x, y) := ax · (g−1)y mod p = gxr−y mod p

Then F (·, ·) has a period in the sense that for every (x, y) we have

F (x, y) = F (x− 1, y + r)

We will perform a bivariate version of the period-finding algorithm that we used to
solve the factorization problem, and then we will see that, after a constant number
of executions of the algorithm, we can recover r.

• Input: prime p, generator g of Z∗p, element z ∈ Z∗p

• Step 1: Fix an M = 2m such that p ≤M ≤ 2p− 1 and construct the state

1

M

∑
x,y

|x〉|y〉|ax · (g−1)y mod p〉 (1)

where each of the three parts of the state is an integer in {0, . . . ,M − 1},
represented as an m-qubit string.

The function x, y → ax · g−y mod p is computable in polynomial time, and
so there is a quantum circuit Cmodexp of polynomial size that, given |x〉|y〉|0〉,
outputs |x〉|y〉|axgy mod p〉. Starting from the state |0〉|0〉|0〉, we first apply
Hadamard gates to the first 2m bits, which results in the state

1

M

∑
x,y

|x〉|y〉|0〉

and then we apply Cmodexp to the above state.

• Step 2: Measure the third integer in the quantum state.

If the outcome of the measurement is gk mod p, then the residual state is

1√
Sk

∑
x,y∈Sk

|x〉|y〉|gk mod p〉

Where

Sk := {x, y : 0 ≤ x < M ∧ 0 ≤ y < M ∧ rx− y ≡ k (mod p− 1)}

From now we will disregard the third integer of the state, which has been fixed
by the measurement.

3

• Step 3: Apply the bivariate quantum Fourier transform.

This gives the state

1

M

1√
Sk

M−1∑
s1=0

M−1∑
s2=0

∑
x,y∈Sk

ωs1x+s2y|s1〉|s2〉

where ω = e2πi
1
M
·(s1x+s2y)

• Step 4: Measure the state

It remains to show that after seeing a constant number of executions of the algorithm
we can reconstruct r from the outcomes at Step 4.

4 Analysis of the Last Step

To understand the distribution of outcomes that we get at Step 4, let us first do a
non-rigorous calculation assuming that M = p− 1 and that p− 1 is prime. In such a
case, Sk is just the set of p−1 pairs (x, y) ∈ Zp−1×Zp−1 such that y = rx−k mod p−1.
The amplitude of state |s1, s2〉 at Step 4 is

1

(p− 1)1.5

∑
x

ωs1x+s2·(rx−k mod p−1) =
1

(p− 1)1.5

∑
x

ωs1x+s2rx−s2k

because operations in the exponent of ω are performed mod M , which is the same as
mod p− 1.

The probability of the outcome |s1, s2〉 is

1

(p− 1)3

∣∣∣∣∣∑
x

ωs1x+s2rx−s2k

∣∣∣∣∣
2

=
1

(p− 1)3

∣∣ω−s2k∣∣2 ∣∣∣∣∣∑
x

ωs1x+s2rx

∣∣∣∣∣
2

=
1

(p− 1)3

∣∣∣∣∣∑
x

(ωs1+s2r)x

∣∣∣∣∣
2

and if s1 + s2r ≡ 0 mod p − 1 then the probability is 1/(p − 1), and otherwise it is
zero. This means that from an outcome (s1, s2) of Step 4 we can reconstruct r as

r = −s1 · (s2)
−1 mod (p− 1)

Unfortunately, we do not have M = p − 1, and so the modular identities that we
get in the exponent of ω are not the same as in the exponent of g, complicating the
structure of Sk and adding error terms to the above calculations. We also don’t have
that p − 1 is prime, which means that at the end we may have problems inverting
modulo p− 1.

4

Before discussing how to deal with these problems, let us see what we may expect
“in practice.” Suppose that we run the algorithm on input p = 61, g = 26 and z = 8.
We pick M = 64, and the probability of the possible outcomes |s1, s2〉 at Step 4 is
plotted below:

and we see that most of the probability is concentrated on outcomes s1, s2 such that
s1 + 3s2 is close to a multiple of 64, and indeed 3 is the correct answer.

For every x ∈ {0, . . . ,M−1}, the set Sk contains the pairs (x, y) such that 0 ≤ y < M
and y = rx − k mod p − 1 and there is always either one or two such y. Hence,
M ≤ Sk ≤ 2M .

In our analysis it will be convenient to use the following notation: {a}M is the dif-
ference between a and the multiple of M that is closest to a. Note that a ≡ {a}M
(mod M) and that −M/2 ≤ {a}M ≤M/2.

The probability of an outcome |s1, s2〉 at Step 4 is

5

1

M2
· 1

Sk

∣∣∣∣∣ ∑
x,y∈Sk

ωs1x+s2y

∣∣∣∣∣
≥ 1

2M3

∣∣∣∣∣ ∑
x,y∈Sk

ωs1x+s2y

∣∣∣∣∣
2

=
1

2M3

∣∣∣∣∣ ∑
x,y∈Sk

ωs1x+s2(rx−k mod p−1)

∣∣∣∣∣
2

=
1

2M3

∣∣∣∣∣ ∑
x,y∈Sk

ωs1x+s2rx−s2k−(p−1)s2b rx−k
p−1
c

∣∣∣∣∣
2

=
1

2M3

∣∣∣∣∣ ∑
x,y∈Sk

ωs1x+s2rx−(p−1)s2b rx−k
p−1
c

∣∣∣∣∣
2

(2)

where, in the second-to-last equation, we use a mod k = a− ba
k
c.

Our approach is now to define a notion of “good” pair (s1, s2), to show that there are
Ω(M) such pairs, that each of them is generate with probability Ω(1/M), and that
from a good pair it is possible to compute (a large amount of information about) r.

Definition 1 (Good Pairs) A pair (s1, s2) is good if

1. s1 + s2r − r
p−1
{s2(p− 1)}M differs from a multiple of M by at most ±1/2.

2. s2(p− 1)differs from a multiple of M by at most ±M/12.

Lemma 2 (Many Good Pairs) There are at least M/12 good pairs.

Proof: We first prove the following fact.

Claim 3 Let k > a > 0 be positive integers, and t < k/2. Then there are at least t
distinct values x such that

−t ≤ {ax}k ≤ t

Proof: Consider the mapping

x→ ax mod k

This is a gcd(a, k)-to-1 mapping, that is, there are k/ gcd(a, k) possible outputs,
each having gcd(a, k) preimages, and each possible output is a multiple of gcd(a, k).

6

(This is easy to see using the Chinese remainders theorem.) We are interested in the
number of preimages of 0 and of possible outputs in the range 1, . . . , t and in the
range M − t, . . . ,M − 1; overall there are

d+ 2d ·
⌊
t

d

⌋
such preimages, where d := gcd(a, k). If t ≤ d, then we have at least d ≥ t preimages;
if t > d we have at least

d+ 2d

(
t

d
− 1

)
= 2t− d > t

preimages. �

From the claim above (applied to x = s2, a = p − 1 and k = M), we see that there
are at least M/12 choices of s2 that satisfy property (2) of being a good pair. For
each such s2, we can find an s1 for which property (1) holds. �

Lemma 4 (High Probability of Good Pairs) Each good pair has probability at
least Ω(1/M) of being a possible outcome of Step 4.

Proof: [Sketch] We write

ωs1x+s2rx−(p−1)s2b rx−k
p−1
c = ωAx+B(x)

where
A := s1 + s2r −

r

p− 1
{s2(p− 1)}M

and

B(x) := {s2(p− 1)}M ·
(

rx

p− 1
−
⌊
rx− k
p− 1

⌋)
When (s1, s2) is a good pair, we have |A| ≤ 1/2 and |B| ≤M/12. The summation

∑
x,y∈Sk

ωAx+B(x)

is a summation of complex numbers ωAx, which are either all of the form eiθ either
with θ between 0 and π or between 0 and −π, and they are uniformly spaced and
some of them may be repeated twice in the sum. Each of them is shifted by eB(x),
which is of the form eiθ with |θ| ≤ π/6. Such a sum produces a vector of length
Ω(M), and so the overall amplitude of (s1, s2) is Ω(1/M). �

Now suppose that we have a good pair (s1, s2); we see that

7

− 1

2M
≤ s1

M
+ r ·

(
s2(p− 1)− {s2(p− 1)}M

M(p− 1)

)
≤ 1

2M
mod 1

where x mod 1 stand for the difference between the real number x and the closest
integer to x.

We also note that s2(p−1)−{s2(p−1)}M
M

is an integer. This means that by finding the
multiple a/(p−1) of 1/(p−1) closest to s1/M we find a number of the form rc/M mod

1, where c = s2(p−1)−{s2(p−1)}M
M

is a known quantity. So we have found numbers a, c
such that a/(p− 1) ≡ rc/(p− 1) mod 1, that is,

a ≡ rc mod (p− 1)

Now we can find
r = a · c−1 mod p− 1

provided that gcd(c, p− 1) = 0. What do we do if c and p− 1 have common factors?
We can still get some useful information, because it is definitely true that

a ≡ rc mod
p− 1

gcd(p− 1, c)

and we can invert cmodulo (p−1)/ gcd(p−1, c) and we find r mod (p−1)/ gcd(p−1, c).

If we run the algorithm twice, we get good pairs both times, and the two good pairs
lead us to values c, c′ with no common factors, then from r mod (p− 1)/ gcd(p− 1, c)
and r mod (p − 1)/ gcd(p − 1, c′) we can reconstruct r mod p − 1 via the Chinese
remainders theorem.

The probability of getting good pairs twice in two consecutive runs of the algorithm
is Ω(1). Conditioned on that, what is the probability of ending up with c, c′ having
no common factor?

This is tricky issue and, indeed, c and c′ will always be even. However, it can be
argued that c, c′ have Ω(1) probability of having distinct factors except possibly for
the first O(1) primes. When we reconstruct r with the Chinese remainder theorem,
we will try all possible values of r modulo those primes.

Overall, two executions of the algorithm give us probability Ω(1) of generating a list of
values that include r. After O(1) iterations, we get a list that has a high probability of
including r. It is then possible to compute modular exponentiation for each candidate
in the list and find the correct r.

8

	The Discrete Log Problem
	A Fourier Transform for Bivariate Functions
	A Generalized Period Finding Algorithm
	Analysis of the Last Step

