Stanford University — CS259Q: Quantum Computing Handout 10
Luca Trevisan October 25, 2012

Lecture 10

In which we present a polynomial time quantum algorithm for the discrete logarithm
problem.

1 The Discrete Log Problem

If p is a prime and g is a generator of the multiplicative group Z;, then the modular
exponentiation function

r — ¢* mod p

is a bijection of Z; to Z;,. The discrete log problem is the problem of inverting this
mapping, that is, given a prime p, a generator g of Z; and an element 2 € Zy, find
the unique r, 0 < r < p — 2, such that ¢" = z (mod p).

An efficient algorithm for the discrete log problem can be used to break several public-
key cryptosystems whose design is based on having (p, g, ¢*¥ mod p) as a private key,
where p is a properly chosen prime, g is a generator of Z;, and z,y are randomly
chosen, while the public key is (p, g, g* mod p, g¥ mod p).

The discrete log problem can be formulated for every group G. Once the group is
fixed, or a description is given, an input to the problem are two elements a, z € G,
and the goal is to find an integer r such that " = z, where " means a X a X ---a
r times and X is the group operation. An algorithm for this more general problem
breaks public-key cryptosystems based on elliptic curves.

In this lecture we describe a polynomial time quantum algorithm for the discrete
logarithm problem in Z*p, but the algorithm can be adapted to work in any Abelian
group. (The groups arising in elliptic curves cryptographic constructions are Abelian.)

2 A Fourier Transform for Bivariate Functions

We briefly describe a theory of discrete Fourier transforms for functions with two
inputs. If M is a positive integer, the functions

fF:{0,....M—=1}x{0,....M—1} > C

form an M2-dimensional vector space. In the univariate case of functions f : {0,..., M—
1} — C, we derived the Fourier transform by defining an orthonormal basis and writ-
ing f as a linear combination of basis functions. Similarly, we will now define M?
orthonormal functions and write each bivariate function as a linear combination of
basis functions.

A general principle is that if vy, ..., v, are an orthonormal vectors, then the collection
of all the tensor products v; ® v; is a set of k? orthonormal vectors. Consider now
1

the functions y,(z) = \/—Me_%”'ﬁ”; we prove that they are orthonormal, and so the

collection of their tensor products

1
Xs1,82 (ZL’, y) = Me

—27riﬁ~(slm+52y)

is a collection of M? orthornomal functions, and thus it is an orthonormal basis for
the set of functions

F{0,... . M—1}x{0,....M—1} > C

Each such function can be written as a linear combination

Flay) =" f(s1,52) « Xorsa(,7)

51,52
where the coefficients of the linear combination (the Fourier coefficients of f) can be
computed as

f 1 mi-L . (s17+8
f(31752) = <f: X51782> = M%f(l’,y)eg 2 (s12+52y)

The transformation from the values f(z,v) to the coefficients f(sy, s2) is a change of
orthonormal basis, and so it is unitary linear transformation, and so if

> fay)lz,y)

is a quantum state, then

> F(s1,8)]s1,5)

51,52
is also a quantum state, and the transformation from the former to the latter is the
quantum (bivariate) Fourier transform; it is easy to see that this can be done in
quantum polynomial time if M = 2™ is a power of 2 by first applying the standard
quantum Fourier transform to x and then to y.

3 A Generalized Period Finding Algorithm

Given a prime p, a generator g of Z; and an element a = ¢g" mod p of Z;, define the
function

F(z,y) :=a"- (g7 ") mod p = ¢"" ¥ mod p

Then F(-,-) has a period in the sense that for every (x,y) we have

F(z,y)=F(xr—1,y+r)

We will perform a bivariate version of the period-finding algorithm that we used to
solve the factorization problem, and then we will see that, after a constant number
of executions of the algorithm, we can recover r.

e Input: prime p, generator g of Z;, element z € Z;

e Step 1: Fix an M = 2" such that p < M < 2p — 1 and construct the state
1 e/ —
=3 la)lyla® -+ (971)" mod p) (1)
7y

where each of the three parts of the state is an integer in {0,..., M — 1},
represented as an m-qubit string.

The function z,y — a® - ¢7Y mod p is computable in polynomial time, and
so there is a quantum circuit Cogerp 0f polynomial size that, given |x)|y)|0),
outputs |z)|y)|a®g¥ mod p). Starting from the state |0)|0)]0), we first apply
Hadamard gates to the first 2m bits, which results in the state

%Z)1} 0)

and then we apply Chuodqesp to the above state.

e Step 2: Measure the third integer in the quantum state.
If the outcome of the measurement is ¢g* mod p, then the residual state is
1

Ve > |2)ly)lg* mod p)

k z,YyESk

Where
Sp={r,y: 0<z<MANO<y<MArz—y=k (modp—1)}

From now we will disregard the third integer of the state, which has been fixed
by the measurement.

e Step 3: Apply the bivariate quantum Fourier transform.

This gives the state

M-1M-1

1 1 +s2y
U D 2 2 sl

$1=0 s2=0 z,y€S}

where w = e2™iar (s10+52y)

e Step 4: Measure the state

It remains to show that after seeing a constant number of executions of the algorithm
we can reconstruct r from the outcomes at Step 4.

4 Analysis of the Last Step

To understand the distribution of outcomes that we get at Step 4, let us first do a
non-rigorous calculation assuming that M = p — 1 and that p — 1 is prime. In such a
case, Sy is just the set of p—1 pairs (z,y) € Z,_1 XZ,_1 such that y = re—k mod p—1.
The amplitude of state |sy, s2) at Step 4 is

1 1
s1x+s2-(re—k mod p—1) __ s1x+sarr—s2k
<p_1>1.52“’1 ’ ! _(p_1)1.52w1 S

because operations in the exponent of w are performed mod M, which is the same as
mod p — 1.

The probability of the outcome |sy, s3) is

2 wslx—l—sg’/’x—szk 2 wslx—i—sgra:
T T

and if s; + sor = 0 mod p — 1 then the probability is 1/(p — 1), and otherwise it is
zero. This means that from an outcome (sy, s2) of Step 4 we can reconstruct r as

2 2 2

1
(p—1)?

_ Z(wsl—l—szr):c

xz

1 1 }w_82k|2
(p—1) (p—1)3

r=—s1-(s9) ' mod (p—1)

Unfortunately, we do not have M = p — 1, and so the modular identities that we
get in the exponent of w are not the same as in the exponent of g, complicating the
structure of Sy and adding error terms to the above calculations. We also don’t have
that p — 1 is prime, which means that at the end we may have problems inverting
modulo p — 1.

Before discussing how to deal with these problems, let us see what we may expect
“in practice.” Suppose that we run the algorithm on input p = 61, g = 26 and z = 8.
We pick M = 64, and the probability of the possible outcomes |s1, o) at Step 4 is

plotted below:

0.016
0.014
0.012
0.010
0.008
0.006
0.004

0.002
0.000

and we see that most of the probability is concentrated on outcomes s, so such that
s1 4 3s9 is close to a multiple of 64, and indeed 3 is the correct answer.

For every x € {0, ..., M —1}, the set Sy contains the pairs (z,y) such that 0 <y < M
and y = rx — kmod p — 1 and there is always either one or two such y. Hence,

M < S, <2M.
In our analysis it will be convenient to use the following notation: {a} is the dif-

ference between a and the multiple of M that is closest to a. Note that a = {a}y
(mod M) and that —M /2 < {a}y < M/2.
The probability of an outcome |sq, s3) at Step 4 is

1 1
k

M2

E : w51$+82y

z,y€Sk

E ws1x+52y

z,YESK

2
1

>
—2M3

2
1

BEWE

§ w81$+52(7'17k mod p—1)

z,yESk

2
1

~oMB

§ : w51x+32r36732k7(p71)82 L?:lk

T,YyESk

2
1

2M3

§ : wslx-l—szr:v—(p—l)sg_rzf__lkj

m7y€Sk

(2)

where, in the second-to-last equation, we use a mod k =a — | #].

Our approach is now to define a notion of “good” pair (s1, $2), to show that there are
Q(M) such pairs, that each of them is generate with probability €2(1/M), and that
from a good pair it is possible to compute (a large amount of information about) 7.

Definition 1 (Good Pairs) A pair (s1, s2) is good if
1. sy 4 sor — S5 {sa(p — 1)} differs from a multiple of M by at most £1/2.
2. so(p — 1)differs from a multiple of M by at most =M /12.

Lemma 2 (Many Good Pairs) There are at least M /12 good pairs.

Proor: We first prove the following fact.

Claim 3 Let k > a > 0 be positive integers, and t < k/2. Then there are at least t
distinct values x such that
—t <{ax}p <t

Proor: Consider the mapping
xr — ax mod k

This is a ged(a, k)-to-1 mapping, that is, there are k/ged(a, k) possible outputs,
each having ged(a, k) preimages, and each possible output is a multiple of ged(a, k).

6

(This is easy to see using the Chinese remainders theorem.) We are interested in the

number of preimages of 0 and of possible outputs in the range 1,...,t and in the
range M —t,..., M — 1; overall there are
t
d+2d- |-
w3

such preimages, where d := ged(a, k). If t < d, then we have at least d > ¢ preimages;
if t > d we have at least

d+2d(§—1):2t—d>t

preimages. [

From the claim above (applied to x = s5, a = p— 1 and k = M), we see that there
are at least M /12 choices of sy that satisfy property (2) of being a good pair. For
each such sy, we can find an s; for which property (1) holds. O

Lemma 4 (High Probability of Good Pairs) FEach good pair has probability at
least QU(1/M) of being a possible outcome of Step 4.

PROOF: [Sketch] We write

re—k

P*ljzw

s1z+sorz—(p—1)sz2| Az+B(x)

w

where
r

p_

A =81+ Sor — 1{82(10—1)}M

and

B(x) := {s2(p— 1)} - (;fl - { . kD

p—1
When (s1, s9) is a good pair, we have |A| < 1/2 and |B| < M/12. The summation

Z wAerB(x)

z,YESk

is a summation of complex numbers w??, which are either all of the form e? either
with 6 between 0 and 7 or between 0 and —m, and they are uniformly spaced and
some of them may be repeated twice in the sum. Each of them is shifted by eZ®),
which is of the form e with |§| < 7/6. Such a sum produces a vector of length

Q(M), and so the overall amplitude of (s, sq9) is Q(1/M). O

Now suppose that we have a good pair (sq, s2); we see that

7

L s, (sap—1) —{s2(p—D}um 1o
' (M(p— 1))SzM !

where x mod 1 stand for the difference between the real number z and the closest
integer to x.

We also note that 2 _1)_5\22(17 —UIM g an integer. This means that by finding the
multiple a/(p—1) of 1/(p—1) closest to s;/M we find a number of the form r¢/M mod

1, where ¢ = 2 71)7‘1{\22(‘” —UIv g g known quantity. So we have found numbers a, ¢
such that a/(p — 1) = re/(p — 1) mod 1, that is,

a=rcmod (p—1)

Now we can find
r=a-cmodp—1

provided that ged(c,p — 1) = 0. What do we do if ¢ and p — 1 have common factors?
We can still get some useful information, because it is definitely true that

p—1

= d—r—
a rCc 1Mo g(jd(p—]ﬂc)

and we can invert ¢ modulo (p—1)/ ged(p—1, ¢) and we find r mod (p—1)/ ged(p—1, ¢).

If we run the algorithm twice, we get good pairs both times, and the two good pairs
lead us to values ¢, ¢ with no common factors, then from r mod (p—1)/ged(p — 1, ¢)
and 7 mod (p — 1)/ ged(p — 1,¢) we can reconstruct r» mod p — 1 via the Chinese
remainders theorem.

The probability of getting good pairs twice in two consecutive runs of the algorithm
is ©(1). Conditioned on that, what is the probability of ending up with ¢, ¢ having
no common factor?

This is tricky issue and, indeed, ¢ and ¢ will always be even. However, it can be
argued that ¢, have Q(1) probability of having distinct factors except possibly for
the first O(1) primes. When we reconstruct r with the Chinese remainder theorem,
we will try all possible values of » modulo those primes.

Overall, two executions of the algorithm give us probability (1) of generating a list of
values that include r. After O(1) iterations, we get a list that has a high probability of
including r. It is then possible to compute modular exponentiation for each candidate
in the list and find the correct 7.

	The Discrete Log Problem
	A Fourier Transform for Bivariate Functions
	A Generalized Period Finding Algorithm
	Analysis of the Last Step

