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Lecture 9

In which we show how to solve the integer factoring problem given an algorithm for
the period-finding problem.

1 The Algorithm

In the past lecture we described a quantum polynomial time algorithm for finding the
period of a periodic function. We summarize below the properties of the algorithm.

Theorem 1 (Lecture 8) Let M = 2m and let f : {0, . . . ,M − 1} → {0, . . . ,M − 1}
be a function computable by a classical circuit of size S, and suppose that f is such
that there is a 1 ≤ r ≤

√
M with the properties that

∀x ∈ {0, . . . ,M − r − 1}.f(x) = f(x + r)

∀x ∈ {0, . . . ,M − r − 1}.f(x), f(x + 1), . . . , f(x + r − 1) are all different

Then, given the circuit for f , there is a quantum algorithm of complexity O(S + m3)
that finds r.

Given the above algorithm, the following is an algorithm that, given a composite
integer N , finds a non-trivial factor of N in polynomial time with constant probability.

• Input: N

• Let m be such that 2m ≤ N2 < 2m+1 and let M := 2m

• Step 1: if there is a k ≥ 2 such that N = ak, then output a The existence of
such a factorization of N can be found by trying all k between 2 and log2 N
and then, for a fixed k, use binary search to determine if there is an a such that
ak = N .

• Step 2: pick a random a ∈ {1, . . . , N − 1}. If gcd(a, N) 6= 1, then output
gcd(a, N)
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• Step 3: find the smallest r such that ar ≡ 1 mod N

This is where use the period-finding algorithm. We define the function f(x) :=
ax mod N with domain {0, . . . ,M − 1}. Such a function is computable in time
O(m3) and so it has a (known) polynomial size classical circuit. The value r is
such that f(x) = f(x+r) for every x, and we can also see that f(0), . . . , f(r−1)
have to be all different, otherwise we would have aj ≡ ai mod N , and so aj−i ≡
1 mod N , and r would not be the smallest power of a that gives us 1. We
also have r ≤ N ≤

√
M , so we can use the quantum period-finding algorithm

applied to f to find r.

• Step 4: if r is even and ar/2 6≡ −1 mod N , output gcd(ar/2 + 1 mod N, N),
otherwise output ⊥.

To see what happens at Step 4, consider the following fact:

Claim 2 Suppose that y is such that

• y 6≡ 1 mod N

• y 6≡ −1 mod N

• y2 ≡ 1 mod N

Then y + 1 mod N share a non-trivial common factor with N .

Proof: We have

0 = y2 − 1 mod N = (y − 1) · (y + 1) mod N

so we have that
(y − 1 mod N) · (y + 1 mod N)

is a multiple of N . But both (y − 1 mod N) and (y + 1 mod N) are smaller than N ,
and non-zero, so for their product to be a multiple of N it means that the factors of
N are split non-trivially between the two numbers. �

The claim shows that if we give an output different from ⊥ at Step 4 then it is a
correct output, because we can apply the claim with y = ar/2 noting that we cannot
have ar/2 ≡ 1 mod N or else r would not be the smallest power of a such that
ar ≡ 1 mod N .

It is clear that if the algorithm gives an output at Step 1 or at Step 2 then it is a
non-trivial factor of N .

If N is composite, then it can be written as N = pk1
1 · . . . p

k`
` . If ` = 1, then k1 ≥ 2

and the algorithm finds a non-trivial factor at Step 2. This means that in the rest of
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the analysis we may restrict ourselves to the case ` ≥ 2. Conditioned on not giving
an output at Step 2, the algorithm selects an a uniformly at random in Z∗

N , where
Z∗

N is the set of all integers a such that gcd(a, N) = 1, together with the operation
of multiplication.

In order to conclude that the algorithm finds a non-trivial factor of N with constant
probability, it remains to prove that

Lemma 3 (Main) Let N = pk1
1 · . . . · p

k`
` be a composite number with ` ≥ 2 distinct

prime factors. Select uniformly at random an element a ∈ Z∗
N . Then there is proba-

bility at least 1− 2`−1 ≥ 1/2 that the order r of a is even and that ar/2 6≡ −1 mod N .

Where the order of an element a ∈ Z∗
n is the smallest r > 0 such that ar ≡ 1 mod N .

2 Proof of the Main Lemma

Our analysis will proceed by considering the value of a mod pki
i for each i = 1, . . . , `,

and the order of a mod pki
i for each i.

We begin with the following fact, whose proof we skip.

Claim 4 Let p be prime and let b be selected uniformly at random in Z∗
pk . Let r be

the order of b. Then, with probability 1/2, the largest power of 2 that divides r is also
the largest power of 2 that divides (p− 1) · pk−1, and with probability 1/2 it is not.

In particular, the above claim shows that if we pick b at random in Z∗
pk and compute

the order r of b, and find what is the largest power 2d of 2 that divides r, then each
possible value of d has probability at most 1/2 of occurring.

The next observation is that, by the Chinese remainders theorem, the mapping

a→ a mod pk1
1 , a mod pk2

2 , · · · , a mod pk`
`

is a bijection between Z∗
N and Z∗

p
k1
1

× · · · × Z∗
p

k`
`

.

This means that if we sample a uniformly at random from Z∗
N and then compute

a1 := a mod pk1
1

· · ·
a` := a mod pk`

`

then each ai is uniformly distributed in Z∗
p

ki
i

and the ai are mutually independent.
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Let ri be the order of ai in Z∗
p

ki
i

, let 2di be the largest power of two that divides ri.

The main lemma follows from the following fact. (Because the di are independent
random variables, and each of them takes each possible value with probability at least
1/2.)

Lemma 5 If the order r of a is odd, or if it is even and ar/2 ≡ −1 mod N , then
d1 = d2 = · · · = d`.

Proof: Notice that each ri divides r, so if r is odd it means that each ri has to be
odd and so d1 = d2 = · · · = d` = 0.

If r is even and ar/2 ≡ −1 mod N , then we also have a
r/2
i ≡ −1 mod pki

i . This means

that ri cannot divide r/2, because otherwise a
r/2
i ≡ 1 mod pki

i . But if ri divides r
and does not divide r/2 it follows that the largest power of two dividing ri is also the
largest power of two dividing r, so if we let 2d be the largest power of two dividing r
we have d1 = d2 = · · · = d` = d.

�
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