Stanford University — CS259Q: Quantum Computing Handout 10
Luca Trevisan October 23, 2012

Lecture 9

In which we show how to solve the integer factoring problem given an algorithm for
the period-finding problem.

1 The Algorithm

In the past lecture we described a quantum polynomial time algorithm for finding the
period of a periodic function. We summarize below the properties of the algorithm.

Theorem 1 (Lecture 8) Let M =2™ and let f:{0,..., M —1} - {0,...,M —1}
be a function computable by a classical circuit of size S, and suppose that f is such
that there is a 1 < r < v/ M with the properties that

Ve e{0,...,M —r—1}.f(x) = f(x +7)

Vee{0,...,M —r—1}.f(z), f(x+1),..., f(x +r—1) are all different

Then, given the circuit for f, there is a quantum algorithm of complezity O(S + m?)
that finds r.

Given the above algorithm, the following is an algorithm that, given a composite
integer NV, finds a non-trivial factor of NV in polynomial time with constant probability.

e Input: N

e Let m be such that 2™ < N2 < 2m+1 and let M := 2™

e Step 1: if there is a k > 2 such that N = a”, then output a The existence of
such a factorization of N can be found by trying all k£ between 2 and log, N
and then, for a fixed k, use binary search to determine if there is an a such that

k
a”® = N.

e Step 2: pick a random a € {1,...,N — 1}. If ged(a, N) # 1, then output
ged(a, N)

e Step 3: find the smallest r such that " = 1 mod N

This is where use the period-finding algorithm. We define the function f(z) :=
a® mod N with domain {0, ..., M — 1}. Such a function is computable in time
O(m?) and so it has a (known) polynomial size classical circuit. The value r is
such that f(x) = f(z+7r) for every x, and we can also see that f(0),..., f(r—1)
have to be all different, otherwise we would have a/ = a‘ mod N, and so o/~ =
1 mod N, and r would not be the smallest power of a that gives us 1. We
also have r < N < VM , so we can use the quantum period-finding algorithm
applied to f to find r.

e Step 4: if r is even and a’/?> Z —1 mod N, output ged(a™/? + 1 mod N, N),
otherwise output L.

To see what happens at Step 4, consider the following fact:

Claim 2 Suppose that y is such that

e yZ%1lmod N
e y% —1mod N
e y>=1mod N

Then y + 1 mod N share a non-trivial common factor with N.

PrOOF: We have
0=%"—1mod N =(y—1)-(y+1) mod N

so we have that
(y—1mod N) - (y+ 1mod N)

is a multiple of N. But both (y — 1 mod N) and (y + 1 mod) are smaller than NV,
and non-zero, so for their product to be a multiple of N it means that the factors of
N are split non-trivially between the two numbers. []

The claim shows that if we give an output different from 1 at Step 4 then it is a

correct output, because we can apply the claim with y = o/ noting that we cannot
have ¢'/? = 1mod N or else » would not be the smallest power of a such that
a” =1 mod N.

It is clear that if the algorithm gives an output at Step 1 or at Step 2 then it is a
non-trivial factor of N.

If N is composite, then it can be written as N = p]fl L .plge. If /=1, then k; > 2
and the algorithm finds a non-trivial factor at Step 2. This means that in the rest of

2

the analysis we may restrict ourselves to the case ¢ > 2. Conditioned on not giving
an output at Step 2, the algorithm selects an a uniformly at random in Z3;, where
7 is the set of all integers a such that ged(a, N) = 1, together with the operation
of multiplication.

In order to conclude that the algorithm finds a non-trivial factor of N with constant
probability, it remains to prove that

Lemma 3 (Main) Let N = p¥' - ... pi* be a composite number with £ > 2 distinct
prime factors. Select uniformly at random an element a € Z3;. Then there is proba-
bility at least 1 —2=' > 1/2 that the order v of a is even and that a”/?> # —1 mod N.

Where the order of an element a € Z is the smallest » > 0 such that ¢” =1 mod N.

2 Proof of the Main Lemma

Our analysis will proceed by considering the value of a mod pf foreachi=1,...,/,
and the order of a mod p!" for each i.

We begin with the following fact, whose proof we skip.

Claim 4 Let p be prime and let b be selected uniformly at random in Z;k. Let r be
the order of b. Then, with probability 1/2, the largest power of 2 that divides r is also
the largest power of 2 that divides (p — 1) - p*=1, and with probability 1/2 it is not.

In particular, the above claim shows that if we pick b at random in Z;k and compute

the order r of b, and find what is the largest power 2¢ of 2 that divides r, then each
possible value of d has probability at most 1/2 of occurring.

The next observation is that, by the Chinese remainders theorem, the mapping

a — a mod p’fl,a mod p’gz,--- ,a mod pf"
is a bijection between Z}, and Z;,fl X e X Z;ZZ.
This means that if we sample a uniformly at random from Z} and then compute

ay := a mod pi*

ay := a mod pf‘

then each a; is uniformly distributed in Z*,, and the a; are mutually independent.
b,

Let 7; be the order of a; in Z%,,, let 29 be the largest power of two that divides 7;.
p.

The main lemma follows from the following fact. (Because the d; are independent
random variables, and each of them takes each possible value with probability at least

1/2.)

Lemma 5 If the order r of a is odd, or if it is even and a’”/> = —1 mod N, then
dy=dy=---=dp.

ProOOF: Notice that each r; divides r, so if r is odd it means that each r; has to be
oddandsody =dy=---=d, =0.

r/2 = /

—1 mod N, then we also have a]’* = —1 mod p**. This means
that r; cannot divide /2, because otherwise a:/ > = 1 mod pl. But if r; divides r
and does not divide r/2 it follows that the largest power of two dividing r; is also the
largest power of two dividing 7, so if we let 2¢ be the largest power of two dividing r

we have dy =dy = --- = dy = d.
O

If 7 is even and a

	The Algorithm
	Proof of the Main Lemma

