
Stanford University — CS259Q: Quantum Computing Handout 7
Luca Trevisan October 16, 2012

Lecture 7

In which we describe the quantum Hadamard Fourier transform and its application
to a simple Boolean “period-finding” problem, which is a simplified version of Shor’s
factoring algorithm, containing all the quantum ideas and none of the number theory.

1 The Hadamard Transform

In this section we describe a variant of the discrete Fourier transform that is applicable
to functions with Boolean inputs. It is usually called the S transform, where S is an
arbitrary non-empty subset of {Hadamard,Rademacher,Walsh}; we will call it the
Hadamard transform.

We consider the 2n-dimensional vector space of functions

f : {0, 1}n → C

with the inner product

〈f, g〉 :=
∑

x

f(x)g(x)

For every s ∈ {0, 1}n we define the function

χs(x) :=
1

2n
(−1)

P
i xisi

It is easy to see that these 2n functions form an orthonormal basis for the vector space
of functions f : {0, 1}n → C. For every s, t, we have

〈χs, χt〉 =
1

2n

∑
x

(−1)
P

i(si+ti)xi

If s = t, then
∑

i(si + ti)xi is always even and so

1

〈χs, χt〉 =
1

2n

∑
x

1 = 1

If s 6= t, then let j be one coordinate such that sj 6= tj, and note that

〈χs, χt〉 = P
x∼{0,1}n

[∑
i

(si + ti)xi ≡ 0 (mod 2)

]
− P

x∼{0,1}n

[∑
i

(si + ti)xi ≡ 1 (mod 2)

]
= 0

where the fact that the two probabilities are equal, and hence their difference is zero,
follows from the fact that we can get a bijection between the strings x for which∑

i(si + ti)xi is even and the strings x for which the expression is odd by matching
strings that differ only in the j-th coordinate.

Having proved that the functions χs form an orthonormal basis, we have that every
function f : {0, 1}n → C can be written as a linear combination

f(x) =
∑

s

f̂(s)χs(x)

where

f̂(s) = 〈f, χs〉 =
1√
2n
f(x)(−1)

P
i xisi

2 Quantum Computation of the Hadamard Trans-

form

By Parseval’s identity, the transformation

∑
x

f(x)|x〉 →
∑

s

f̂(s)|s〉

is unitary.

It is not hard to see that it can also be realized by a linear-size quantum circuit
that simply applies a Hadamard gate to each input qubit. To verify this claim it is
sufficient to observe that the Hadamard transform realizes the operation:

|x〉 → 1√
2

n

∑
s

(−1)
P

i xisi |s〉

2

=
n⊗

i=1

1√
2

(|0〉+ (−1)xi |1〉) = Hx1 ⊗Hx2 ⊗ · · · ⊗Hxn

3 Simon’s Algorithm

In this section, we describe and analyze a quantum algorithm that solves the Boolean
version of the problem of finding the period of a periodic function. Although the
problem is rather artificial, the algorithm makes all the steps and contains all the
quantum ideas of Shor’s algorithm for factoring, without all the number theory, the
trigonometry, and the need to deal with roundings and approximations. For this rea-
son, understanding Simon’s algorithm is an excellent preparation to Shor’s algorithm.

The problem that we want to solve is as follows: we are given a boolean func-
tion f : {0, 1}n → {0, 1}n which is efficiently computable (say, by a circuit of size
S(n) = nO(1)) and that is 2-to-1, meaning that every possible output has precisely
two preimages; furthermore, we are promised that there is a non-zero boolean string
r such that for every x we have f(x) = f(x ⊕ r). Our goal is to find collisions of f
or, equivalently, the string r.

Before proceeding, we recall a fact from our treatment of classical circuits and quan-
tum circuits: suppose that g : {0, 1}n → {0, 1}m is a function computable by a classi-
cal circuit of size S. Then there is a quantum circuit that operates on n+m+O(S)
qubits, of size O(S), made of UCNOT gates and one-qubit gates, that computes a
unitary transformation Ug such that for all x ∈ {0, 1}n we have

Ug(|x〉|0 · · · 0〉|0 · · · 0〉) = |x〉|g(x)〉|0 · · · 0〉

where the first part of the input is of length n, the second of length m, and the third
of length O(S).

We now turn to Simon’s algorithm, which proceeds as follows:

1. Create the quantum state 1√
2n

∑
x |x〉|f(x)〉

Let Uf be a unitary transformation on ` = n + n + O(S(n)) bits that maps
|x〉|0 · · · 0〉|0 · · · 0〉 to |x〉|f(x)〉|0 · · · 0〉. We construct a circuit over ` qubits that
first applies Hadamard gates to each of the first n inputs. After these operations,
starting from the input |0`〉 we get 1√

2n |x〉|0`−n〉. Then we apply Uf , which gives

us the state 1√
2n |x〉|f(x)〉|0`−2n〉. From this point on, we ignore the last `− 2n

wires.

2. Measure the last n bits of the state

The outcome of this measurement will be a possible output f(z) of f(·), and,
for each such possible outcome, the residual state will be

3

1√
2
|z〉|f(z)〉+

1√
2
|z + r〉|f(z)〉

From this point on we ignore the last n bits of the state because they have been
fixed by the measurement.

3. Apply the Hadamard transform to the first n bits

The state becomes

1√
2n+1

∑
s

(
(−1)

P
i sizi + (−1)

P
i si(zi+ri)

)
|s〉

Now we see that the amplitude of |s〉 in the above state is 1√
2n−1

if∑
i

sizi ≡
∑

i

si(zi + ri) (mod 2)

which is equivalent to ∑
i

siri ≡ 0 (mod 2)

and it is zero otherwise.

4. Measure the first n bits.

The measurement will give us a random element of the set of strings s such that∑
i

siri ≡ 0 (mod 2)

If we think of s and r as vectors in the n-dimensional vector space Fn
2 , then we

get a linear equation about r.

Now we repeat the above algorithm until we find a collection of strings s(j) such that
for each j we have

∑
i

s
(j)
i ri ≡ 0 (mod 2)

and such that the s(j) span the whole space, that is, n of them are linearly independent.
It is easy to see that the algorithm only needs to be executed O(n) times on average
until this condition is satisfied.

Once we have n linearly independent linear equations in the unknown r, and we can
find r via Gaussian elimination.

4

	The Hadamard Transform
	Quantum Computation of the Hadamard Transform
	Simon's Algorithm

