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Lecture 6

In which we describe the quantum Fourier transform.

1 The Discrete Fourier Transform

The discrete Fourier transform is a linear operator that happens to be unitary and,
very fortunately, to be efficiently realizable as a quantum circuit. It is the main
step in an efficient quantum algorithm that finds the period of a periodic function
which, in turns, leads to efficient quantum algorithms for factoring and discrete log.
A quantum Fourier transform (of a different type from the one described today) also
plays a role in Grover’s search algorithm. One could say that the Fourier transform is
the only known unitary operator that is efficiently computable by a quantum circuit
and that is useful to speed up algorithms for useful problems. It remains an open
problem to find more such unitary operators.

We begin by defining the discrete Fourier transform. The Fourier transform of a
function is just the collection of coefficients that are used to write the function as a
linear combination of the elements of a certain nicely chosen basis.

First recall the following fact: if V is an n-dimensional vector space with an inner
product 〈·, ·〉, and v1, . . . , vn are vectors such that 〈vi, vj〉 = 0 for all i 6= j and
〈vi, vi〉 = 1 for all i, then v1, . . . , vn is called an orthonormal basis for V , and every
vector x ∈ V can be written as a linear combination

x = a1v1 + · · · anvn

where the coefficient ai satisfy ai = 〈x, vi〉. The coefficients also satisfy Parseval’s
identity, which is essentially a version of the Pythagorean theorem):

||x||2 =
∑
i

|ai|2 (1)

Let us now fix an integer N ≥ 1, and consider the N -dimensional vector space of
functions
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f : {0, . . . , N − 1} → C

with the inner product

〈f, g〉 :=
∑
x

f(x)g(x)

For every integer s ∈ {0, . . . , N − 1}, define the function

χs(x) :=
1√
N
e−2πi·sx/N

To simplify notation, in the following, we call ω := e2πi/N . Note that ω is a primitive
N-th root of 1, that is, ωN = 1 and ωk 6= 1 for all 1 ≤ k ≤ N − 1.

It is easy to see that the functions χs form an orthonormal basis for the set of functions
f : {0, . . . , N − 1} → C. Indeed, we have

〈χs, χt〉 =
∑
x

1√
N
ω−sx · 1√

N
ωtx =

1

N

∑
x

ω(t−s)·x

So when s = t we have 〈χs, χs〉 = 1. When s 6= t, let us call d := t− s, then

·〈χs, χt〉 =
1

N

∑
x

ωdx

Let us consider the sum S :=
∑

x ω
dx. We have

S = 1 + ωd + ω2d + · · ·+ ω(N−1)d

and if we multiply the sum by ωd we have

ωd · S = ω + ω2d + · · ·+ ω(N−1)d + 1

where we use ωN = 1. So the two sums are clearly the same and so we have

(1− ωd) · S = 0

which implies S = 0 because d is not a multiple of N and so ωd cannot equal 1. In
conclusion, we proved that if s 6= t then

〈χs, χt〉 = 0
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and so the functions χs form an orthonormal basis.

This means that every function f : {0, . . . , N − 1} → C can be written as a linear
combination

f(x) =
∑
s

f̂(s)χs(x)

where the coefficients f̂(s) can be computed as

f̂(s) = 〈f, χs〉 =
1√
N

∑
x

f(x)ωsx

The collection of coefficients f̂(s) can itself be thought of as a function

f̂ : {0, . . . , N − 1} → C

such a function f̂ is called the discrete Fourier transform of f , and the values f̂(s)
are called the Fourier coefficients of f .

In the classical setting, there is an algorithm that, given the values of f , computes the
values of f̂ in time O(N logN). This algorithm, called the Fast Fourier Transform
algorithm,1 is one of the most frequently executed non-trivial algorithm. Every device
capable of handling digital audio, such as the one that is probably in your pocket right
now, contains an implementation of the FFT algorithm, and it executes it repeatedly
when it plays audio or during a phone call.

In the quantum setting, we will show that, in a certain sense, the discrete Fourier
transform can be computed in time O((logN)2), a fact that will lead to exponential
speed-ups for certain algorithmic applications.

2 The Quantum Fourier Transform Algorithm

Note, that because of Parseval’s identity (1), for every function f : {0, . . . , N−1} → C
we have

∑
x

|f(x)|2 =
∑
s

|f̂(s)|2

this means that if q =
∑

x f(x)|x〉 is a quantum state over the state space Ω :=

{0, . . . , N−1}, then q′ :=
∑

s f̂(s)|s〉 is also a quantum state, and the transformation

1It is one of the two famous algorithms that boast about their efficiency in their name.
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that maps q to q′ is a unitary operator, which we call UDFT . As we will see, this
unitary operator can be computed by a quantum circuit of size O((logN)2) when
N = 2n is a power of two.

Let us fix N = 2n, and call ω = e2πi/N a primitive N -th root of unity. If we can
construct a quantum circuit that, on input a classical state |z〉 outputs UDFT |z〉,
then, by linearity, the circuit will compute UDFT given in input any quantum state.

For z ∈ {0, . . . , N}, the state |z〉 corresponds to
∑

x f(x)|x〉 for the function f() that
is zero everywhere except for f(z) = 1. Computing the Fourier coefficients of such a
function gives us

UDFT |z〉 =
1√
N

∑
s

ωsz|s〉 (2)

Since we want to design a qubit-based quantum circuit to compute UDFT , we repre-
sent an integer z as the bit-string (z1, . . . , zn) that is the binary representation of z,
meaning that z = 2n−1z1 + · · ·+ 2z2 + z1. We can rewrite ωsz as

ωsz = ω(
Pn

i=1 2n−isi)·(
Pn

j=1 2n−jzj)

=
n∏
i=1

ωsi·
Pn

j=1 22n−i−jzj

=
n∏
i=1

ωsi·
Pn

j=n−i+1 22n−i−jzj

where the last identity follows from the fact that ω2n
= 1. The last expression show

that the amplitude of |s〉 in the right-hand side of (2) can be written as a product
of n terms, each depending on only one of the bits of s. This means that the state
UDFT |x〉 can be written as a tensor product

UDFT =
n⊗
i=1

1√
2

(
|0〉+ ω

Pn
j=n−i+1 22n−i−jzj |1〉

)
and the i-th bit of the output can be computed using one Hadamard gate and i
phase-modifying gates, each operating on 2 qubits and hence implementable with a
constant number of CNOT and 1-qubit gates. The circuit, of size O(n2), is shown in
the textbook at page 219.
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