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Lecture 2

In which we describe the quantum analogs of product distributions, independence, and
conditional probability, and we describe the process of quantum teleportation, which
is precisely what the name suggests.

1 Measurements, Tensor Products, and Entangle-

ment

In this section we describe how to reason about measurements, and how to combine
smaller quantum systems in to a bigger one.

1.1 Measurements

Let Ω be our set of possible states (for example, {0, 1}m, if we are studying a com-
puting device that has m bits of storage).

In the setting of probability, an event is a subset E ⊆ Ω; for example we could have
Ω = {0, 1}m and E be the set of binary strings where the first bit is one. If p ∈ RΩ

is a probability distribution over Ω, then the probability, according to p, that a event
E holds is

P[E] :=
∑
a∈E

pa

and the probability that E does not hold is

P[Ω− E] :=
∑
a6∈E

pa

If we know that a certain system has a state that is distributed according to dis-
tribution p, and then we are told that even E holds, then the knowledge that E
holds changes our distribution to the conditional distribution of p given E. This new
distribution, let’s call it p′ is such that
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• p′a = 0 if a 6∈ E

• p′a = paP
b∈E pb

if a ∈ E

Similarly, if we are told that E does not hold, our new distribution will be p′ such
that

• p′a = paP
b 6∈E pb

if a 6∈ E

• p′a = 0 if a ∈ E

The rationale for the above rules is very natural: if we know that the event E hap-
pened, then clearly this makes the probability of any state outside of E to be zero. For
the states inside E, the information that E happened does not change our estimate
for their relative likelihood, and their probability should add up to one, and the only
way to satisfy these two constraints is to multiply each probability by 1/

∑
a∈E pa.

In the quantum setting, if q ∈ CΩ is a pure quantum state over the state space Ω, a
binary measurement is defined by a subset E ⊆ Ω. The outcome of the measurement
is one bit of information, that tells us whether our state is an element of E or not.
For concreteness, we can think of Ω = {0, 1}m and E being the set of m-bit strings
where the first bit is one. Then if q ∈ C{0,1}m is an m-qubit quantum state, measuring
q according to E can be thought of as measuring the first of the m qubits.

The probability that the outcome of the measurement is “element of E” is

∑
a∈E

|qa|2

and the probability that the outcome of the measurement is “not element of E” is

∑
a6∈E

|qa|2

If the outcome of the measurement is “element of E,” then we are left with a modified
quantum state, in which states not in E have amplitude zero, and the other states
maintain their relative amplitudes while still having the squares of the amplitudes
summing to 1. Similarly to the rules for conditional probability, the new quantum
state q′ is such that

• q′a = 0 if a 6∈ E

• q′a = qa√P
b∈E |qb|2

if a ∈ E.
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Similarly, if the outcome of the measurement is “not element of E,” then the new
quantum state after the measurement is

• q′a = qa√P
b6∈E |qb|2

if a 6∈ E.

• q′a = 0 if a ∈ E

For example, suppose that we have a 2-qubit quantum state q ∈ C{0,1}2 such that

q =


1√
6

− 1√
6

1√
3

− 1√
3


where the rows of q are indexed, top to bottom, by 00, 01, 10, 11.

If we measure the first bit of the quantum state (corresponding to the event {10, 11}),
then the outcome of the measurement will be 1 with probability 2/3 and 0 with
probability 1/3.

If the outcome is 1, then the residual state will be

q =


0
0

1√
2

− 1√
2


If the outcome is 0, then the residual state will be

q =


1√
2

− 1√
2

0
0


In a more general type of measurement, we have a quantum state q ∈ CΩ and a
partition S1, . . . , Sk of Ω. In this case the outcome of the measurement is an ele-
ment of {1, . . . , k}; for each i ∈ {1, . . . , k}, the probability that the outcome of the
measurement is i is

∑
a∈Si

|qa|2

and if the outcome of the measurement is i then the residual quantum state becomes
the vector q′ such that
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• q′a = 0 if a 6∈ Si

• q′a = qa√P
b∈Si

|qb|2
if a ∈ Si

There is an equivalent and more linear-algebraic way of giving the above definitions.
Suppose that S1, . . . , Sk is a partition of Ω, and for each i let Mi ∈ CΩ×Ω be the
projection matrix such that for every vector x we have (M · x)a = xa if a ∈ Si and
(M · x)a = 0 if a 6∈ Si. (That is, Mi is the matrix such that Mi,a,b = 1 if a = b and
a ∈ Si and Mi,a,b = 0 otherwise.) Then we have that

• For every i, the probability that the measurement of a quantum state q gives
the outcome i is

||Mi · q||2

• If the outcome of the measurement is i, then the residual state is

1

||Mi · q||
·Mi · q

The definition of measurement could be further generalized by considering an ar-
bitrary collection of orthogonal projection matrices that sum to the identity (as
described in the textbook) but the above level of generality will suffice for all ap-
plications.

1.2 Ket notation

It is common in linear algebra to denote vectors with an overhead arrow, as in ~v. In
quantum mechanics, if v is a label chosen to represent a quantum state, then |v〉 is
the notation for the corresponding vector. In particular, if Ω is a state space, then
it is common, for every a ∈ Ω, to use |a〉 to denote the vector in CΩ that has a 1
in the a-th coordinate and 0s everywhere else. (Such a vector corresponds to the
“classical state a” in which a has amplitude one and all other states have amplitude
zero.) Every pure quantum state can be written as a linear combination of vectors
|a〉, usually resulting in a more readable expression than writing the vector as a 1×|Ω|
array. For example, the quantum state over Ω = {0, 1}2 that we used as an example
above can be written as

1√
6
|00〉 − 1√

6
|01〉+

1√
3
|10〉 − 1√

3
|11〉
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which expresses much more clearly which states has which amplitudes compared with
the notation 

1√
6

− 1√
6

1√
3

− 1√
3


If |v〉 ∈ CΩ is a vector, then 〈v| denotes the conjugate transpose of v. With this
notation, the inner product between two vectors |v〉 and |w〉 can be written as the
matrix product

〈v| · |w〉

(where the dot is usually omitted) which is suggestive of the standard notation 〈v, w〉.

1.3 Tensor Products

Going back to the setting of probability, suppose that we have a sample space A
and a probability distribution pA ∈ RA defined over A, and a sample space B and a
probability distribution pB ∈ RB defined over B. Then we can define a probability
distribution p over the product space Ω := A×B by setting pa,b := pa · pb (it is easy
to verify that p is indeed a probability distribution) which corresponds to the prob-
abilistic process of sampling an element from A according to pA and, independently,
an element from B according to pB, thus selecting a pair in A×B.

In linear algebra, if x ∈ CA and y ∈ CB are vectors, then their tensor product
x⊗ y ∈ CA×B is defined as the vector such that (x⊗ y)a,b := xa · xb. This means that
the above way of combining a distribution pA over A and a distribution pB over B to
get a distribution over A×B is precisely the tensor product of pA and pB.

The quantum analog is as follows. If qA ∈ CA is a pure quantum state over the state
space A and qB ∈ CB is a pure quantum state over the state space B, then the vector
qA ⊗ qB ∈ CA×B is a pure quantum state over the product space A× B (this can be
easily verified), and it corresponds to the quantum state in which the part of the state
encoded by A is in a superposition described by qA, the part of the state encoded
by B is in a superposition described by qB, and the two parts are “independent,” or,
in the quantum terminology, not entangled. In general, if we can write a quantum
state q ∈ CA×B as a tensor product qA ⊗ qB of two quantum states qA ∈ CA and
qB ∈ CB, then we say that the information in A and the information in B of q are
not entangled, otherwise we say that they are entangled.
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For examples, returning to a quantum state that we already used in a previous ex-
ample, consider the 2-qubit state

1√
6
|00〉 − 1√

6
|01〉+

1√
3
|10〉 − 1√

3
|11〉

it can be written as (
1√
3
|0〉+

√
2

3
|1〉

)
⊗
(

1√
2
|0〉 − 1√

2
|1〉
)

and so it is a 2-qubit quantum state in which the two qubits are not entangled.

The quantum state

1√
2
|00〉+

1√
2
|11〉

instead, is an example of a 2-qubit quantum state in which the two qubits are entan-
gled. (More about this state in the next subsection.)

A tensor product can also be defined for matrices. If MA ∈ CA×A and MB ∈ CB×B

are matrices, then their tensor product is the matrix M = MA ⊗MB such that

M(a,b),(a′,b′) := MA,a,a′ ·MB,b,b′

If MA ∈ RA×A is a stochastic matrix that describes a probabilistic process over
elements of A, and MB ∈ RB×B is a stochastic matrix that describes a probabilistic
process over elements of B, then M = MA⊗MB is a stochastic matrix (prove it) that
describes a probabilistic process over pairs in A×B; specifically, it is the process that
operates on the first element of the pair according to MA and, independently, on the
second element of the pair according to MB.

If UA ∈ CA and UB ∈ CB are unitary matrices, then their tensor product U = UA⊗UB

is also a unitary matrix (prove it), and it corresponds to the quantum operator over
the state space A × B that operates according to UA on the first element of a state
and according to UB on the second element. For example, if we have a 4-qubit state
space {0, 1}5, the operation that applies U ∈ C4×4 to the first two qubits and leaves
the other three qubits unchanged is the operation U⊗I8, where I8 is the 8×8 identity
matrix.

Note that if MA ∈ CA×A and MB ∈ CB×B are matrices and x ∈ CA and y ∈ CB are
vectors, then we have

(MA ⊗MB) · (x⊗ y) = (MA · x)⊗ (MB · y)
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1.4 EPR Pairs

The quantum state

1√
2
|00〉+

1√
2
|11〉

is called an EPR pair, because it was studied in a paper by Einstein, Podolsky and
Rosen. The paper highlighted properties of such a quantum state that seemed to
contradict physical intuition and to point to gaps in the theory of quantum mechanics.
Later experiments have confirmed that EPR pairs can be generated in a laboratory
and their behavior does obey the prediction of quantum mechanics.

The perceived problem with EPR pairs is as follows: particles do have binary prop-
erties, for example spin, and so it is possible to have to particles whose respective
spins form the 2-qubit quantum state 1√

2
|00〉 + 1√

2
|11〉. Suppose now that these two

particles with entangled spins are separated by a very large distance, say that we keep
one particle in Palo Alto and move the other particle to New York. Now suppose
that we measure the spin of the particle in Palo Alto. Because of the way, described
above, in which measurements work, we will measure with probability 1/2 a spin 0
and with probability 1/2 a spin 1. No matter the outcome of the measurement, after
we perform it, the spin of the particle in New York becomes determined, and equal
to the spin that we measured in Palo Alto. This means that: (1) the quantum state
of the particle in New York changed as an effect of the measurement we performed in
Palo Alto, and (2) the quantum state of the particle in New York changed in a way
that depends on the outcome of the measurement in Palo Alto. Einstein made fun
of prediction (1) as “spooky action at a distance,” and the counterintuitive nature of
prediction (2) is that the state of the particle in New York changes instantaneously
after the experiment, even though information can never travel faster than the speed
of light.

In any event, experiments have shown that EPR pairs can be created and behave ac-
cording to the theory. We will not discuss the interesting question of how to interpret
this prediction, and of how to develop a physical intuition for such phenomena.

1.5 Unitary Transformations from Classical Bijective Func-
tions

Suppose that f : Ω → Ω is a bijective function. Then we use f to define a unitary
matrix Uf in the following way:

• Uf,a,b = 1 if f(b) = a

• Uf,a,b = 0 otherwise.
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The matrix Uf is a unitary matrix because Uf · x is essentially the same vector as
x, except that the coordinates of x are permuted according to f . In particular, the
Euclidean norm of Uf · x and of x are the same.

It is easy to see that for every a ∈ Ω we have

Uf · |a〉 = |f(a)〉

That is, Uf is the matrix that, applied to a classical state, simply applies f(·) to the
state. When Uf is applied to a more general quantum state it simply permutes the
amplitudes according to f .

2 Quantum Teleportation

Consider the following scenario: we are on the surface of a planet and we have found
an object a that in a quantum superposition of two possible states, |a〉 = α|0〉+β|1〉.
We also have a bit b that is half of an EPR pair |bc〉, while the other bit c is on a
spaceship orbiting around the planet. We would like to teleport the quantum state
a to the spaceship using only the ability to communicate classical messages between
the surface of the planet and the spaceship. (As usual, teleporting an object means
that the object at the source is destroyed and an identical copy is reconstituted at
the destination.) One of the most remarkable things about this process is that the
quantum state |a〉 is specified by two complex numbers, and thus it cannot be encoded
with any finite number of classical bits, yet only two bits of classical information are
exchanged between the planet and the spaceship.

Here is the “algorithm” for teleportation:

1. [On the planet] Apply the unitary transformation UCNOT to the qubits a, b.

2. [On the planet] Apply the unitary transformation H to a.

3. [On the planet] Measure the qubits a, b and send the outcome of the measure-
ment to the spaceship

4. [On the spaceship] If the outcome of the b measurement is 1, apply the unitary

transformation

(
0 1
1 0

)
to c, else do nothing

5. [On the spaceship] If the outcome of the a measurement is 0, apply the unitary

transformation

(
1 0
0 −1

)
to c, else do nothing.
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We are going to prove that at the end of this algorithm, the bit a is in a classical
state (hence it’s “destroyed” as a quantum state) and the bit c has the same quantum
state as a had at the beginning.

At the beginning, the three bits are in the quantum state s0

|s0〉 = (α|0〉+ β|1〉)⊗
(

1√
2
|00〉+

1√
2
|11〉

)
=

1√
2

(α|000〉+ α|011〉+ β|100〉+ β|111〉)

Applying the operator UCNOT to the first two bits while doing nothing on the third
bit corresponds to applying the operator UCNOT ⊗ I1 to the whole state. The result
can be computed by applying UCNOT ⊗ I1 to each of the basis elements. For example,

(UCNOT ⊗ I1) · |000〉 = (UCNOT ⊗ I1) · (|00〉 ⊗ |0〉)

= (UCNOT · |00〉)⊗ (I1 · |0〉)

= |00〉 ⊗ |0〉 = |000〉

In general, applying UCNOT ⊗ I1 to a basis state |x1x2x3〉 gives the basis state
|CNOT (x1, x2)x3〉. So after the first step we have the state

|s1〉 = (UCNOT ⊗ I1) · |s0〉

=
1√
2

(α|000〉+ α|011〉+ β|110〉+ β|101〉)

In the second step, we apply the transformation H to the first bit, that is, we apply
the transformation H ⊗ I2 to the state s1. For every basis vector of the form |0x2x3〉,
we have

(H ⊗ I2) · |0x2x3〉 =
1√
2
|0x2x3〉+

1√
2
|1x2x3〉

and for every vector of the form |1x2x3〉 we have

(H ⊗ I2) · |1x2x3〉 =
1√
2
|0x2x3〉 −

1√
2
|1x2x3〉

so at the second step we have the state

s2 = (H ⊗ I2) · |s1〉
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=
1

2
(α|000〉+ α|100〉+ α|011〉+ α|111〉+ β|010〉 − β|110〉+ β|001〉 − β|101〉)

In the third step, we measure the first two bits. The measurement has four possible
outcomes, and we continue the analysis by considering what happens in each case

• Outcome 00. This outcome happens with probability 1
4
α2 + 1

4
β2 = 1

4
.

If the measurement has outcome 00, then the residual quantum state is

s3 = α|000〉+ β|001〉 = (|00〉)⊗ (α|0〉+ β|1〉)

which means that the bits on the planet are not entangled with the bits on
the spaceship (and are, in fact, just the classical bits 00), while the bit on the
spaceship has the exact state that the bit a had at the beginning.

• Outcome 01. This outcome happens with probability 1
4
α2 + 1

4
β2 = 1

4
.

If the measurement has outcome 01, then the residual quantum state is

s3 = α|011〉+ β|010〉 = (|01〉)⊗ (α|1〉+ β|0〉)

At this point, on the spaceship, we apply the transformation UNOT =

(
0 1
1 0

)
while we apply no operation to the bits on the planet, after which we have the
state

s4 = (I2 ⊗ UNOT ) · s3 = (|01〉)⊗ (α|0〉+ β|1〉)

which means that the bits on the planet are not entangled with the bits on
the spaceship (and are, in fact, just the classical bits 01), while the bit on the
spaceship has the exact state that the bit a had at the beginning.

• Outcome 10. This outcome happens with probability 1
4
α2 + 1

4
β2 = 1

4
.

If the measurement has outcome 10, then the residual quantum state is

s3 = α|100〉 − β|101〉 = (|10〉)⊗ (α|0〉 − β|1〉)

At this point, on the spaceship, we apply the transformation Z =

(
1 0
0 −1

)
while we apply no operation to the bits on the planet, after which we have the
state

s4 = (I2 ⊗ Z) · s3 = (|10〉)⊗ (α|0〉+ β|1〉)
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which means that the bits on the planet are not entangled with the bits on
the spaceship (and are, in fact, just the classical bits 10), while the bit on the
spaceship has the exact state that the bit a had at the beginning.

• Outcome 11. This outcome happens with probability 1
4
α2 + 1

4
β2 = 1

4
.

If the measurement has outcome 11, then the residual quantum state is

s3 = α|111〉 − β|110〉 = (|11〉)⊗ (α|1〉 − β|0〉)

In the next step, on the spaceship, we apply the UNOT =

(
0 1
1 0

)
, getting the

state

s4 = (I2 ⊗ UNOT ) · s3 = (|11〉)⊗ (α|0〉 − β|1〉)

The last step is to apply, on the spaceship, the transformation Z =

(
1 0
0 −1

)
while we apply no operation to the bits on the planet, after which we have the
state

s5 = (I2 ⊗ Z) · s4 = (|11〉)⊗ (α|0〉+ β|1〉)

which means that the bits on the planet are not entangled with the bits on
the spaceship (and are, in fact, just the classical bits 11), while the bit on the
spaceship has the exact state that the bit a had at the beginning.
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