
Problem 1: NFA Minimization (30)

High Level Idea

• We will show that 3CNF ≤p NFAALL, where NFAALL is the language containing all NFAs that
accept Σ∗. Formally, NFAALL = {N | L(N) = Σ∗}.

• Next, we will show that if we can minimize NFAs in poly time, then NFAALL ∈ P

• From this, it follows that coNP = P , which gives P = NP .

Step 1: 3CNF ≤p NFAALL

• We will define a function f :: 3CNF → NFA such that L(f(φ)) = Σ∗ iff φ is unsatisfiable.

• Let φ be a 3CNF with m clauses and n variables, where

– φ = c1 ∧ c2 ∧ .... ∧ cm
– ∀i : ci = li,1 ∨ li,2 ∨ li,3
– forall i, j: li,j is either xk or xk.

• For each ci, we can construct Ni, where:

– L(Ni) = set of all strings that make ci evaluate to false. Formally, Li = {s | |s| = n, li,1 = li,2 =
li,3 = 0}

– We can construct Ni using (n+ 2) gates by not caring about the bits that li,∗ do not touch, and
forcing the bits that li,∗ does touch.

• Thus, N = (∪iNi) accepts all strings x such that φ(x) = false and |x| = n.

• Define O = ∪n−1
i=0 Σi (to be a NFA accepting all strings of length < n), and P to be a NFA accepting

all strings of length > n.

• Note that N , O, and P all have size polynomial in terms of n.

• Finally, output the NFA Q = N ∪O ∪ P .

• L(Q) = Σ∗ ⇔ φ is unsatisfiable.

Step 2: If we can minimize NFAs in poly time, then NFAALL ∈ P .

Given a NFA N , we run minimize(N), and check if the output is a single state NFA where:

• start state = final state

• loops back on itself on 0,1

Step 3: Thus P = NP

Combining steps 1 and 2, we get coNP = P , from which it follows that P = NP , since P = P and
coNP = NP .
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Problem 2: ExactClique is both NP-hard and coNP-hard (30)

Main Idea:

• We will define f , a reduction from 3CNF to Clique.

• If φ ∈ 3CNF is satisfiable, the largest clique in f(φ) will have size exactly m.

• If φ ∈ 3CNF is unsatisfiable, the largest clique in f(φ) will have size exactly m− 1.

Reduction:

Consider the following reduction from 3CNF: (this is similar to the textbook Clique reduction)

• Let φ be a 3CNF with m clauses and n variables, where

– φ = c1 ∧ c2 ∧ .... ∧ cm
– ∀i : ci = li,1 ∨ li,2 ∨ li,3
– forall i, j: li,j is either xk or xk.

• def f’(phi):

create 3m nodes, one for each l_{i,j} where 1 <= i <= n, 1 <= j <= 3

for each 1 <= i1 <= n, 1 <= j1 <= 3

1 <= i2 <= n, 1 <= j2 <= 3

if (i1 != i2) and l_{i1,j1} != negate l_{i2,j2}

then draw edge between l_{i1,j1} and l_{i2,j2}

return Graph

def f(phi):

G = f’(phi)

H = a clique of size (m-1)

return (G union H)

Useful Lemma:

• If φ is satisfiable, the largest clique of f(φ) has size m.

• If φ is unsatisfiable, the largest clique of f(φ) has size m− 1.

Proof:

• The size of the largest clique can never be less than m− 1 due to the union with H.

• The size of the largest clique can never be more than m since in G, we can take a most one node from
each clause.

• If φ is satisfiable, we take the clique from G, and have size m.

• If φ is unsatisfiable, we take the clause from H, and have size m− 1.

Proof of NP-hard:

Given an instance φ of 3CNF , consider the query 〈f(φ),m〉. It follows that the largest clique of f(φ) has
size m iff φ is satisfiable. Thus, ExactClique is NP-Hard.

Proof of coNP-hard:

Given an instance φ of 3CNF , consider the query 〈f(φ),m − 1〉. It follows that the largest clique of f(φ)
has size m− 1 iff φ is not satisfiable. Thus, ExactClique is NP-Hard.
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Problem 3: Circuit Minimization (40)

CircuitMin in polytime ⇒ P = NP (10 points)

• We will solve φ ∈ 3CNF is poly time.

• By definition, each 3CNF is a circuit, so φ is a circuit.

• Let c = minimize(φ).

• If c is a single gate saying “False”, we know that φ is not satisfiable.

• Otherwise, φ is satisfiable.

P = NP ⇒ CircuitMin in polytime (30 points)

• Fact 1: a circuit with m gates can be encoded using 10m logm bits.
Proof: each gate can be encoded using 10 logm bits. There are m gates. Thus 10m logm.

• Define decode :: {0, 1}∗ → Circuit be the function which interprets binary strings as Circuits.

• CircuitEQ is the langauge consisting of all pairs of circuits that encode the same function. Formally,
CircuitEQ = {C1, C2 | ∀x : C1(x) = C2(x)}.

• We note that CircuitEQ ∈ NP (since a x s.t. C1(x) 6= C2(x) is a witness).
Thus, CircuitEQ ∈ P and CircuitEQ ∈ P .

• CircuitExist is the language consisting of all triplets (Circuit, Int, Peefix) where there exists an equiv-
alent circuit of a certain size or smaller, starting with a given prefix. Formally,

CircuitExist =
{

(C1, 1
k, x) | ∃y :

(
|x ◦ y| ≤ 10k log k

)
∧
(
CircuitEQ(C1, decode(x ◦ y))

)
∧
(
size(decode(x ◦ y)) ≤ k

)}
.

• CircuitExist ∈ NP since (1) the string y serves as a witness and (2) CircuitEQ can be evaluated in
polynomial time.

• We now define our minimizer

def find_opt_size(C):

smallest_size = size(C);

while (Circuit_Exist(C, smallest_size, ""))

smallest_size--;

return smallest_size+1;

def find_a_circuit_of_opt_size(C, opt_size, cur_prefix):

if (cur_prefix decodes to circuit of size opt_size)

then return cur_prefix

else if (Circuit_Exist (C, opt_size, cur_prefix ++ "0"))

// can we add a 0, and still find a circuit?

then return Circuit_Exist (C, opt_size, cur_prefix ++ "0"

else return Circuit_Exist (C, opt_size, cur_prefix ++ "1"

def CircuitMin (C):

opt_size = find_opt_size(C):

return find_a_circuit_of_opt_size(C, opt_size, "")
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