Problem 1: NFA Minimization (30)
High Level Idea

We will show that 3SCNF <, NFA,rr, where NFA,rp is the language containing all NFAs that
accept X*. Formally, NFAsr, = {N | L(N) = X*}.

Next, we will show that if we can minimize NFAs in poly time, then NFAar; € P

From this, it follows that coN P = P, which gives P = NP.

Step 1: 3CNF <, NFAuLp

We will define a function f :: 3SCNF — NF A such that L(f(¢)) = X* iff ¢ is unsatisfiable.
Let ¢ be a 3CNF with m clauses and n variables, where

—¢p=c1NCcaN.... Ncmy

— Vi C; = li,l V l1'72 V li’g

— forall 4, j: I; ; is either x} or Ty.
For each ¢;, we can construct N;, where:

— L(N;) = set of all strings that make ¢; evaluate to false. Formally, L; = {s | |s| =n,l;1 = L2 =
liz =0}

— We can construct IV; using (n + 2) gates by not caring about the bits that /; . do not touch, and
forcing the bits that [; . does touch.

Thus, N = (U;N;) accepts all strings x such that ¢(z) = false and |z| = n.

Define O = U?:_OlEi (to be a NFA accepting all strings of length < n), and P to be a NFA accepting
all strings of length > n.

Note that N, O, and P all have size polynomial in terms of n.
Finally, output the NFA Q = NUOU P.
L(Q) = ¥* & ¢ is unsatisfiable.

Step 2: If we can minimize NFAs in poly time, then NF A, € P.

Given a NFA N, we run minimize(N), and check if the output is a single state NFA where:

start state = final state

loops back on itself on 0,1

Step 3: Thus P= NP
Combining steps 1 and 2, we get coNP = P, from which it follows that P = NP, since P = P and

coNP = NP.

Problem 2: ExactClique is both NP-hard and coNP-hard (30)
Main Idea:

e We will define f, a reduction from 3CNF to Clique.

e If p € B3CNF is satisfiable, the largest clique in f(¢) will have size exactly m.

e If p € B3CNF is unsatisfiable, the largest clique in f(¢) will have size exactly m — 1.

Reduction:
Consider the following reduction from 3CNF: (this is similar to the textbook Clique reduction)
e Let ¢ be a 3CNF with m clauses and n variables, where

—¢o=ci1ANcaN....\Ncp,
— Vi C; = 11‘71 \Y li’g V li73
— forall 4, j: I; ; is either z} or Ty.

e def f’(phi):
create 3m nodes, one for each 1_{i,j} where 1 <= i <=n, 1 <= j <=3
for each 1 <= il <=n, 1 <= jl1 <=3
1<=i2<=n, 1 <= j2 <= 3
if (i1 '= i2) and 1_{il,j1} != negate 1_{i2,j2}
then draw edge between 1_{il,j1} and 1_{i2,j2}
return Graph

def f(phi):
G = £’ (phi)
H = a clique of size (m-1)
return (G union H)
Useful Lemma:

e If ¢ is satisfiable, the largest clique of f(¢) has size m.

o If ¢ is unsatisfiable, the largest clique of f(¢) has size m — 1.

Proof:

e The size of the largest clique can never be less than m — 1 due to the union with H.

e The size of the largest clique can never be more than m since in GG, we can take a most one node from
each clause.

o If ¢ is satisfiable, we take the clique from G, and have size m.

e If ¢ is unsatisfiable, we take the clause from H, and have size m — 1.

Proof of NP-hard:

Given an instance ¢ of 3CNF, consider the query (f(¢), m). It follows that the largest clique of f(¢) has
size m iff ¢ is satisfiable. Thus, FzactClique is NP-Hard.

Proof of coNP-hard:

Given an instance ¢ of 3CNF, consider the query (f(¢), m — 1). It follows that the largest clique of f(¢)
has size m — 1 iff ¢ is not satisfiable. Thus, EzxactClique is NP-Hard.

Problem 3: Circuit Minimization (40)
CircuitMin in polytime = P = NP (10 points)
e We will solve ¢ € 3CNF is poly time.
e By definition, each 3C N F is a circuit, so ¢ is a circuit.
e Let ¢ = minimize(d).
e If ¢ is a single gate saying “False”, we know that ¢ is not satisfiable.

e Otherwise, ¢ is satisfiable.

P = NP = CircuitMin in polytime (30 points)

e Fact 1: a circuit with m gates can be encoded using 10m log m bits.
Proof: each gate can be encoded using 10logm bits. There are m gates. Thus 10m log m.

e Define decode :: {0,1}* — Clircuit be the function which interprets binary strings as Circuits.

o (Circuitpg is the langauge consisting of all pairs of circuits that encode the same function. Formally,
Circuitpg = {C1,Cs | Vz : C1(x) = Ca(z)}.

e We note that Clircuitgpg € NP (since a x s.t. Cq(z) # Ca(x) is a witness).
Thus, Circuitgg € P and Circuitpg € P.

o Clircuit st is the language consisting of all triplets (Circuit, Int, Peefix) where there exists an equiv-
alent circuit of a certain size or smaller, starting with a given prefix. Formally,

Circuit ppist = {(Cl, 1%, 2) | Iy - (\x oy| < 10k log k) A (CircuitEQ(Cl, decode(z o y))) A (size(decode(x oy)) < k) }

o Circuitggist € NP since (1) the string y serves as a witness and (2) Circuitgg can be evaluated in
polynomial time.

e We now define our minimizer

def find_opt_size(C):
smallest_size = size(C);
while (Circuit_Exist(C, smallest_size, ""))
smallest_size—-;
return smallest_size+1;

def find_a_circuit_of_opt_size(C, opt_size, cur_prefix):
if (cur_prefix decodes to circuit of size opt_size)
then return cur_prefix
else if (Circuit_Exist (C, opt_size, cur_prefix ++ "0"))
// can we add a 0, and still find a circuit?
then return Circuit_Exist (C, opt_size, cur_prefix ++ "O"
else return Circuit_Exist (C, opt_size, cur_prefix ++ "1"

def CircuitMin (C):
opt_size = find_opt_size(C):
return find_a_circuit_of_opt_size(C, opt_size, "")

