Problem 1

• Solution 1

 $\{L \mid L \subseteq \Sigma^*\}$ is uncountable. The number of TMs is countable. Therefore, there is an undecidable subset of Σ^* .

• Solution 2

Consider $L = \{1^{E\langle M, x \rangle} \mid M(x) \text{ halts } \}$ for some encoding E (for example, $E(x, y) = bin(1 \circ bd(x) \circ 01 \circ y))$.

Problem 2

• L has recognizer $R \Rightarrow$ exists decider D s.t. $L = \{x \mid \exists y : D(x, y) \text{ accepts }\}$:

D(x,y) = does R(x) accept within y steps?

• exists decider D s.t. $L = \{x \mid \exists y : D(x, y) \text{ accepts }\} \Rightarrow L$ has recognizer R:

```
R(x) =
for y in Sigma^* in lexi order:
    if D(x,y) accepts, accept
```

Problem 3

- *L* is countable
 - Let $L_M = \{x \mid M(x) \in A\}$
 - Let $L' = \{L_M \mid M \text{ is a TM }\}.$
 - Note that L' is countable since the number of TMs is countable. We will now show that $L \subseteq L'$.
 - Take any $B \in L$, there must be some M_B such that $x \in B \Leftrightarrow M_B(x) \in A$. Thus, $B = \{x \mid M_B(x) \in A\} = L_{M_B} \in L'$.
- U is uncountable
 - Consider $f(x) = 0 \circ x$.
 - For a string x and a set S, define $x \circ S = \{x \circ y \mid y \in S\}$.
 - Consider $S = \{(0 \circ A) \cup (1 \circ X) \mid X \subseteq \Sigma^*\}.$
 - It follows that $\forall B \in S : \forall x : x \in A \Leftrightarrow f(x) \in B$. Thus, $S \subseteq U$.
 - Furthermore, note that since $|S| = |2^{\Sigma^*}|$, S is uncountable.

Grading Rubric

- There's basically 5 proofs: P1 (30), P2 one direction (15), P2 other direction (15), P3 countable (20), P3 uncountable (20).
- For each section:
 - Decide if solution is "basically correct" or "way off" (incorrect reduction; reducing in wrong direction; etc ...)
 - "Way off" solutions = 0 points
 - "Basically correct solutions" = start from full credit, deduct points as necessary for minor technical mistakes
 - When taking off points, provide a short (1-2 sentence) explaination for why points are being deducted.