
Problem 1

nfa<-regex :: Regex -> NFA // from class

dfa<-nfa :: NFA -> DFA // from class

complement :: DFA -> DFA // flips the final states

intersect :: DFA -> DFA -> DFA // from class, accepts iff both DFAs accept

def algo(R :: Regex, S :: Regex)

dfa_R = dfa<-nfa (nfa<-regex R)

dfa_S = dfa<-nfa (nfa<-regex S)

dfa_ans = dfa_R intersect (complement dfa_S)

return dfa_ans

For correctness, note that L(dfaans) = ∅ ⇔ L(R) ∩ L(S) = ∅ ⇔ L(R) ⊆ L(S).
For termination, we note that (1) our function does not have loops / recursions and (2) all functions our
function calls terminate.

Problem 2

(a) Let RA be a recognizer for A.

We will contruct a recognizer R_CATM for (complement A_TM) as follows:

def R_CATM (M, x):

def m1(z):

if (M(x) == accept)

then accept

else reject

def m2(z):

reject

return RA(m1, m2)

Proof (not required for full credit)

case (M,x) is in (complement A_TM):

(M,x) not in A_TM

M(x) does not accept

L(m1) = emptyset

L(m2) = emptyset

(m1, m2) is in A

RA(m1, m2) halts + accepts

Yay!

case (M,x) is NOT in (complement A_TM):

(M,x) is in A_TM

M(x) accepts

L(m1) = all strings

L(m2) = emptyset

(m1, m2) is NOT in A

RA(m1, m2) does not accept

Yay!

1

(b) Let RCA be a recognizer for (complement A).

We will contruct a recognizer R_CATM for (complement A_TM) as follows:

def R_CATM (M, x):

def m1(z):

accept

def m2(z):

if (M(x) == accept)

then accept

else reject

return RCA(m1, m2)

Proof (not required for full credit)

case (M,x) is in (complement A_TM):

(M,x) not in A_TM

M(x) does not accept

L(m1) = all strings

L(m2) = emptyset

(m1, m2) is NOT in A

RCA(m1, m2) halts + accepts

Yay!

case (M,x) is NOT in (complement A_TM):

(M,x) is in A_TM

M(x) accepts

L(m1) = all strings

L(m2) = all strings

(m1, m2) is in A

RCA(m1, m2) does not accept

Yay!

Problem 3

(a) worker(M, s):

run M(s) for |s|^2 steps

if halted, reject

if still running, accept

R(M):

for s in lexicographical order

fork worker(M, s);

if (any existing worker accepts), accept;

(b) Let RL be a recognizer for L.

We will now construct a recognizer RC_HTM for (complement H_TM):

def RC_HTM(M, x):

2

def m1(z):

run M(x) for |z|^2 steps

if M(x) is still running, halt

if M(x) halted, inf loop

return RL(m1)

Proof (not required for full credit):

If (M,x) is in (complement H_TM):

M(x) does not halt

m1(z), for all z, halts after |z|^2 + 2 steps

m1 in L ==> RL(m1) halts + accepts

If (M,x) is NOT in (complement H_TM):

M(x) halts after k steps

consider some z s.t. |z|^2 > k

m1(z):

sims M(x) for |z|^2 > k steps

M(x) halts ==> inf loops

thus m1 not in L ==> RL(m1) does not accept

Grading Rubric

• There’s 5 separate sections: P1 (30), P2a (15), P2b (15), P3a (10), P3b (30).

• For each section:

– Decide if solution is “basically correct” or “way off” (incorrect reduction; reducing in wrong
direction; etc ...)

– “Way off” solutions = 0 points

– “Basically correct solutions” = start from full credit, deduct points as necessary for minor technical
mistakes

– When taking off points, provide a short (1-2 sentence) explaination for why points are being
deducted.

• For P3: we allow students the following variations (instead of |x|2 time steps):

– |x|2 + 100

– 9999 ∗ |x|2 + 9999

– |x|2 requirement for all |x| > k

3

