
Problem 1 Solution

To show ShortestPath∈NL, we’ll first consider nondeterministic logspace machine that given (G, s, t, k) will
decide if there is a path from s to t is less than or equal to k length thus showing this more general problem
is in NL:

Input: (G = (V,E), s, t, k)
Let p = s
for i = 1, ..., k

if p == t accept
Guess p =neighbor of p

reject

So, deciding if there’s a ≤ k length path from s to t is in NL. And since NL=coNL, then complement
problem of deciding if there does not exist a an s− t path of length ≤ k is NL. Moreover, there’s a shortest
path of length exactly k iff there’s a path of length ≤ k and there’s not a path of length ≤ k − 1, both of
which have a logspace nondeterminstic machine deciding them. And so ShortestPath must also be in NL.

And to show ShortestPath∈NL-hard we will show ST-REACH ≤L
mShortestPath since NL=coNL. That

is, we want a log-space transducer that takes input G = (V,E), s, t and outputs G′ = (V ′, E′), s′, t′, k′ such
that

(G, s, t) ∈ ST-REACH⇔ (G′, s′, t′, k′) ∈ ShortestPath

To do this let’s take (G, s, t) and preserve s, and t and change G into G′ by letting V ′ be V with n = |V |
extra vertices and by letting E′ be E with the extra edges necessary to have a direct path from s to t through
only and all of the newly introduced n vertices. So now G′ is a copy of G with one extra overarching path
from s to t of length n + 1. Finally, let k′ be n + 1. We just need to argue our iff statement holds.

If (G, s, t) ∈ ST-REACH, then there is not any path from s to t and so the only path in G′ is the n + 1
length path we added and so (G′, s′, t′, n + 1) ∈ ShortestPath. And if (G′, s′, t′, n + 1) ∈ ShortestPath, then
the shortest path in G′ is length n+1 and so that must have been the path we added and couldn’t have been
in G since there were only n vertices in G. Furthermore, there is no other path in G′ since n+1 is the shortest
and so G couldn’t have had any s− t path and thus (G, s, t) ∈ ST-REACH. So ST-REACH ≤L

mShortestPath
and so ShortestPath∈NL-hard.

Problem 2 Solution

Suppose A ∈SPACE(n2). This implies that we have a machine, MA, that takes input x and decides if x ∈ A

in space |x|2. Now consider the polynomial time reduction that takes x and turns it into the string x ◦ 0|x|
2

- i.e. x padded with |x|2 zeroes. Since we’re just adding a polynomial number of zeroes, this is certainly a
polynomial time reduction.

Now consider the machine that takes this new input and just looks at the first |x| bits and then runs
MA on them. MA will take |x|2 space to decide if x ∈ A but |x|2 is linear on the size of the padded
input! So this machine must also decide A but in space linear to the size of its input. Thus, A ∈SPACE(n)
and, since A was arbitrary, SPACE(n2)⊆SPACE(n). But this contradicts the space hierarchy theorem
since SPACE(n)subsetSPACE(n2). So it can’t be the case the SPACE(n) is closer under polynomial time
reductions.

Problem 3 Solution

If NP=SPACE(n2), then SPACE(n2) would be closed under polynomial time reductions since NP is. How-
ever, we can make an almost identical argument to what we did in problem 2 to show that SPACE(n2) is
not closer under polynomial time reductions. So NP can’t equal SPACE(n2).

1

