

- Don't panic.
- The practice midterm has 9 problems.
- The real midterm has 3 problems.

Let $\Sigma = \{0, 1\}$. Let **reverse** : $\Sigma^* \to \Sigma^*$ be the reverse function. Prove that for every k, there exists a language L where the minimal DFA for L has k + 2 states, but the minimal DFA for $L^R = \{ \text{reverse}(x) \mid x \in L \}$ has 2^k states.

Given k, define L_k

Prove L_k has exactly k+2 equivalence classes.

Prove L_k^R has exactly 2^k equivalence classes.

Let $\Sigma = \{0, 1\}$. Let \circ be the concat operator. Prove there exists some regular language L such that $L' = \{w \circ w | w \in L\}$ is irregular.

 $\mathbf{Define}\ L$

Argue that L is regular

Show that L' has an infinite number of equivalence classes

Let $\Sigma = \{0, 1\}$. Let \circ be the concat operator. Prove that for every regular $L, L' = \{w | w \circ w \in L\}$ is regular.

Let L be any regular language. Show that L' is also regular.

Hint, take the DFA for L, construct a DFA for L'

Let $\Sigma = \{0, 1\}$. For a NFA, an accepting path is any path from the starting state to any accepting state, consistent with the input. A 2NFA is an ϵ -free NFA that accepts if and only if the total number of accepting paths is exactly 2.

Prove that 2NFAs only recognize regular languages.

Let L be any language recognized by a 2NFA. Prove L is regular.

Hint: construct a DFA

Let $\Sigma = \{0, 1\}$. For a NFA, an accepting path is any path from the starting state to any accepting state, consistent with the input. An odd-NFA is an ϵ -free NFA that accepts if and only if the total number of accepting paths is odd.

Prove that odd-NFAs only recognize regular languages.

Let L be any language recognized by an odd-NFA. Prove L is regular.

Hint: construct a DFA

Let $\Sigma = \{0, 1\}$. The Turing Machines we have seen in class are 1D-TM since they operate on a 1D-tape. A 2D-TM operates on a 2D-grid and has transition function $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{LEFT, RIGHT, UP, DOWN\}$. (The input is written along the x-axis). Prove that a 2DTM is equivalent in power to a 1DTM.

Design an algorithm executable on a 1D-TM for simulating 2D-TMs.

Let $\Sigma = \{0, 1\}$. For $s, r \in \Sigma^*$, we say that $s \prec r$ if (1) |s| < |r| or (2) |s| = |r| and s appears ahead of r in alphabetical order.

A sequence of strings s_1, s_2, \dots is in lexicographical order if for all i < j, we have $s_i \prec s_j$.

A language is lexicographically enumerable if there is an enumerator that outputs the language in lexicographical order.

Prove that a language is lexicographically enumerable if and only if it is decidable.

Assume L is lexicographically enumerable. Prove L is decidable.

Assume L decidable. Prove L is lexicographically enumerable.

For every integer n, consider the streaming complexity of the problem of deciding whether a graph on n vertices, given by a stream of edges, is bipartite.

That is, for a set of n vertices V, our alphabet $\Sigma = \{\{x, y\} \mid x, y \in V, x \neq y\}$ is all possible (undirected) edges between these vertices and our stream is a sequence of these edges. If we call the set of each edge in this stream E, then G = (V, E) is the undirected graph defined by it. We want a streaming algorithm that takes the stream and computes whether or not G is bipartite. Show that every streaming algorithm for this problem requires $\Omega(n)$ bits of memory.

Define Q, the set of distinguishable strings.

Argue that for any $s, r \in Q$, they are distinguishable.

Argue that $|Q| = 2^{\Omega(n)}$

For every integer n, consider the streaming complexity of the problem of deciding whether a graph on n vertices, given by a stream of edges, is connected.

That is, for a set of n vertices V, our alphabet $\Sigma = \{\{x, y\} \mid x, y \in V, x \neq y\}$ is all possible (undirected) edges between these vertices and our stream is a sequence of these edges. If we call the set of each edge in this stream E, then G = (V, E) is the undirected graph defined by it. We want a streaming algorithm that takes the stream and computes whether or not G is connected. Show that every streaming algorithm for this problem requires $\Omega(n \log n)$ bits of memory.

Define Q, the set of distinguishable strings.

Hint: you are not expected to solve this problem. We have put it here in case the rest of the practice midterm was not entertaining.

Argue that for any $s, r \in Q$, they are distinguishable.

Argue that $|Q| = 2^{\Omega(n \log n)}$