
U.C. Berkeley — CS172: Automata, Computability and Complexity Handout 9
Professor Luca Trevisan 4/21/2015

Notes on Zero Knowledge

These notes on zero knowledge protocols for quadratic residuosity are based on notes from CS276,
Cryptography, scribed by Milosh Drezgich, Alexandra Constantin, and Anindya De.

1 Intuition

A zero knowledge proof is an interactive protocol between two parties, a prover and a verifier. Both
parties have in input a statement that may or may not be true, for example, the description of a
graph G and the statement that G is 3-colorable, or integers N, r and the statement that there is
an integer x such that x2 mod N = r. The goal of the prover is to convince the verifier that the
statement is true, and, at the same time, make sure that no information other than the truth of
the statement is leaked through the protocol.

A related concept, from the computational viewpoint, is that of a zero knowledge proof of
knowledge, in which the two parties share an input to an NP -type problem, and the prover wants
to convince the verifier that he, the prover, knows a valid solution for the problem on that input,
while again making sure that no information leaks. For example, the common input may be a
graph G, and the prover may want to prove that he knows a valid 3-coloring of G, or the common
input may be N, r and the prover may want to prove that he knows an x such that x2 mod N = r.

If a prover “proves knowledge” of a 3-coloring of a graph G, then he also proves the statement
that G is 3-coloring; in general, a proof of knowledge is also a proof of the statement that the given
instance admits a witness. In some cases, however, proving that an NP statement is true, and hence
proving existence of a witness, does not imply a proof of knowledge of the witness. Consider, for
example, the case in which common input is an integer N , and the prover wants to prove that he
knows a non-trivial factor N . (Here the corresponding “statement” would be that N is composite,
but this can easily be checked by the verifier offline, without the need for an interaction.)

Identification schemes are a natural application of zero knowledge. Suppose that a user wants
to log in into a server. In a typical Unix setup, the user has a password x, and the server keeps a
hash f(x) of the user’s password. In order to log in, the user sends the password x to the server,
which is insecure because an eavesdropper can learn x and later impersonate the user.

In a secure identification scheme, instead, the user generates a public-key/ secret key pair
(pk, sk), the server knows only the public key pk, and the user “convinces” the server of his identity
without revealing the secret key. (In SSH, for example, (pk, sk) are the public key/ secret key pair
of a signature scheme, and the user signs a message containing a random session identifier in order
to “convince” the server.)

If f is a one-way function, then a secure identification scheme could work as follows: the user
picks a random secret key x and lets its public key be f (x). To prove its identity, the user engages
in a zero knowledge proof of knowledge with the server, in which the user plays the prover, the server
plays the verifier, and the protocol establishes that the user knows an inverse of f(x). Hence, the
server would be convinced that only the actual person would be able to log in, and moreover from
the point of view of the user he/she will not be giving away any information the server might
maliciously utilize after the authentication.

This example is important to keep in mind as every feature in the definition of the protocol has
something desirable in the protocol of this model.

1

The main application of zero knowledge proofs is in the theory of multi party protocols in which
multiple parties want to compute a function that satisfies certain security and privacy property.
One such example would be a protocol that allow several players to play online poker with no
trusted server. By such a protocol, players exchange messages to get the local view of the game
and also at the end of the game to be able to know what is the final view of the game. We would
like that this protocol stays secure even in the presence of malicious players. One approach to
construct such a secure protocol is to first come up with a protocol that is secure against “honest
but curious” players. According to this relaxed notion of security, nobody gains extra information
provided that everybody follows the protocol. Then one provides a generic transformation from
security against “honest but curious” to security against malicious user. This is achieved by each
user providing a ZKP at each round that in the previous round he/she followed the protocol. This
would on one side convince the other players that no one is cheating and on the other side the player
presenting the protocol would provide no information about his own cards. This forces apparent
malicious players to act honestly, as only they can do is to analyze their own data. At at the same
time this is also not a problem for the honest players.

2 The Quadratic Residuosity Problem

We review some basic facts about quadratic residuosity modulo a composite.
If N = p · q is the product of two distinct odd primes, and Z∗N is the set of all numbers in

{1, . . . , N − 1} having no common factor with N , then we have the following easy consequences of
the Chinese remainder theorem:

• Z∗N has (p− 1) · (q − 1) elements, and is a group with respect to multiplication;

Proof:

Consider the mapping x → (x mod p, x mod q); it is a bijection because of the Chinese re-
mainder theorem. (We will abuse notation and write x = (x mod p, x mod q).) The elements
of Z∗N are precisely those which are mapped into pairs (a, b) such that a 6= 0 and b 6= 0, so
there are precisely (p− 1) · (q − 1) elements in Z∗N .

If x = (xp, xq), y = (yp, yq), and z = (xp × yp mod p, xq × yq mod q), then z = x× y mod N ;
note that if x, y ∈ Z∗N then xp, yp, xq, yq are all non-zero, and so z mod p and z mod q are
both non-zero and z ∈ Z∗N .

If we consider any x ∈ Z∗N and we denote x′ = (x−1p mod p, x−1q mod q), then x · x′ mod N =
(xpx

−1
p , xqx

−1
q) = (1, 1) = 1.

Therefore, Z∗N is a group with respect to multiplication. �

• If r = x2 mod N is a quadratic residue, and is an element of Z∗N , then it has exactly 4 square
roots in Z∗N
Proof:

If r = x2 mod N is a quadratic residue, and is an element of Z∗N , then:

r ≡ x2 mod p

r ≡ x2 mod q.

Define xp = x mod p and xq = x mod q and consider the following four numbers:

x = x1 = (xp, xq)

2

x2 = (−xp, xq)
x3 = (xp,−xq)
x4 = (−xp,−xq).
x2 ≡ x21 ≡ x22 ≡ x23 ≡ x24 ≡ r mod N .

Therefore, x1, x2, x3, x4 are distinct square roots of r, so r has 4 square roots.

�

• Precisely (p− 1) · (q − 1)/4 elements of Z∗N are quadratic residues

Proof:

According to the previous results, Z∗N has (p−1) ·(q−1) elements, and each quadratic residue
in Z∗N has exactly 4 square roots. Therefore, (p− 1) · (q − 1)/4 elements of Z∗N are quadratic
residues. �

• Knowing the factorization of N , there is an efficient algorithm to check if a given y ∈ Z∗N is
a quadratic residue and, if so, to find a square root.

It is, however, believed to be hard to find square roots and to check residuosity modulo N if
the factorization of N is not known.

Indeed, we can show that from any algorithm that is able to find square roots efficiently mod
N we can derive an algorithm that factors N efficiently.

Theorem 1 If there exists an algorithm A of running time t that finds quadratic residues modulo
N = p · q with probability ≥ ε, then there exists an algorithm A∗ of running time t+O(logN)O(1)

that factors N with probability ≥ ε
2 .

Proof: Suppose that, for a quadratic residue r ∈ Z∗N , we can find two square roots x, y such that
x 6= ±y (mod N). Then x2 ≡ y2 ≡ r mod N , then x2−y2 ≡ 0 mod N . Therefore, (x−y)(x+y) ≡
0 mod N . So either (x− y) or (x+ y) contains p as a factor, the other contains q as a factor.

The algorithm A∗ is described as follows:
Given N = p× q

• pick x ∈ {0 . . . N − 1}

• if x has common factors with N , return gcd(N, x)

• if x ∈ Z∗N

– r := x2 mod N

– y := A(N, r)

– if y 6= ±x mod N return gcd(N, x+ y)

WIth probability ε over the choice of r, the algorithm finds a square root of r. Now the behavior
of the algorithm is independent of how we selected r, that is which of the four square roots of r
we selected as our x. Hence, there is probability 1/2 that, conditioned on the algorithm finding a
square root of r, the square root y satisfies x 6= ±y (mod N), where x is the element we selected
to generate r. �

3

3 The Quadratic Residuosity Protocol

We consider the following protocol for proving quadratic residuosity.

• Verifier’s input: an integer N (product of two unknown odd primes) and a integer r ∈ Z∗N ;

• Prover’s input: N, r and a square root x ∈ Z∗N such that x2 mod N = r.

• The prover picks a random y ∈ Z∗N and sends a := y2 mod N to the verifier

• The verifier picks at random b ∈ {0, 1} and sends b to the prover

• The prover sends back c := y if b = 0 or c := y · x mod N if b = 1

• The verifier cheks that c2 mod N = a if b = 0 or that c2 ≡ a · r (mod N) if b = 1, and
accepts if so.

We show that:

• If r is a quadratic residue, the prover is given a square root x, and the parties follow the
protocol, then the verifier accepts with probability 1;

• If r is not a quadratic residue, then for every cheating prover strategy P ∗, the verifier rejects
with probability ≥ 1/2.

Proof:
Suppose r is not a quadratic residue. Then it is not possible that both a and a×r are quadratic

residues. If a = y2 mod N and a × r = w2 mod N , then r = w2(y−1)2 mod N , meaning that r is
also a perfect square.

With probability 1/2, the verifier rejects no matter what the Prover’s strategy is.
�

Definition 2 A protocol defined by two algorithms P and V is an interactive proof with efficient
prover, for a decision problem if:

• (Completeness) for every input x for which the correct answer is YES, there is a witness
w such that P (x,w) � V (x) interaction ends with V accepting with probability one.

• (Soundness) for every input x for which answer is NO, for algorithm P ∗ of arbitrary com-
plexity P ∗(x,w) � V (x) interaction ends with V rejecting with probability at least half (or
at least 1− 1

2k
if protocol repeated k times)

So the quadratic residuosity protocol described above is an interactive proof with efficient prover
for the quadratic residuosity problem.

We now formalize what we mean by the verifier gaining zero knowledge by participating in
the protocol. The interaction is ZK if the verifier could simulate the whole interaction by himself
without talking to the prover.

Definition 3 (Honest Verifier Perfect Zero Knowledge) A protocol (P, V) is Honest Veri-
fier Perfect Zero Knowledge with simulation complexity s for a decision problem if there is an
algorithm S(·) that has complexity at most s, such that ∀x for which the answer is YES, S (x)
samples the distribution of P (x,w) � V (x) interactions for every valid w.

4

Therefore the simulator does not know the witness but it is able to replicate the interaction
between the prover and the verifier. One consequence of this is, the protocol is able to simulate all
possible interactions regardless of what particular witness the prover is using. Hence the protocol
does the same regardless of witness. This witness indistinguishability property is useful on its own.

We now show that the above protocol is also zero knowledge. More precisely, we show the
following.

Theorem 4 For every verifier algorithm V ∗ of complexity ≤ t there is a simulator algorithm of
average complexity ≤ 2t + (logN)O(1) such that for every odd composite N , every r which is a
quadratic residue (mod N) and every square root of x of r, the distributions

S∗(N, r) (1)

and
P (N, r, x)↔ V ∗(N, r) (2)

are identical.

Proof: The simulator S∗ is defined as follows. It first picks b1 ∈ {0, 1} uniformly at random. It
also picks y ∈ Z∗n uniformly at random. If b1 = 0, set a = y2 and if b1 = 1, set a = y2r−1. Note that
irrespective of the value of b1, a is a uniformly random element of Z∗n. With this S∗ simulates the
interaction as follows. First, it simulates the prover by sending a. If the second round reply from V ∗

(call it b) is not the same as b1, then it aborts the simulation and starts again. If not, then clearly
c = y is the reply the prover will send for both b = 0 and b = 1. Hence whenever the simulation
is completed, the distribution of the simulated interaction is same as the actual interaction. Also
observe that b1 is a random bit statistically independent of a while b is totally dependent on a (and
probably some other random coin tosses). Hence in expectation, in two trials of the simulation,
one will be able to simulate one round of the actual interaction.Hence the expected time required
for simulation is the time to simulate V ∗ twice and the time to do couple of multiplications in Z∗n.
So, in total it is at most 2t+ (logN)O(1). �

4 Proofs of Knowledge

Suppose that L is a language in NP; then there is an NP relation RL(·, ·) computable in polynomial
time and polynomial p(·) such that x ∈ L if and only if there exists a witness w such that |w| ≤ p(|x|)
(where we use |z| to denote the length of a bit-string z) and R(x,w) = 1.

Recall the definition of soundness of a proof system (P, V) for L: we say that the proof system
has soundness error at most ε if for every x 6∈ L and for every cheating prover strategy P ∗ the
probability that P ∗(x)↔ V (x) accepts is at most ε. Equivalently, if there is a prover strategy P ∗

such that the probability that P ∗(x)↔ V (x) accepts is bigger than ε, then it must be the case that
x ∈ L. This captures the fact that if the verifier accepts then it has high confidence that indeed
x ∈ L.

In a proof-of-knowledge, the prover is trying to do more than convince the verifier that a witness
exists proving x ∈ L; he wants to convince the verifier that he (the prover) knows a witness w such
that R(x,w) = 1. How can we capture the notion that an algorithm “knows” something?

Definition 5 (Proof of Knowledge) A proof system (P, V) for an NP relation RL is a proof of
knowledge with knowledge error at most ε and extractor slowdown es if there is an algorithm K

5

(called a knowledge extractor) such that, for every prover strategy P ∗ of complexity ≤ t and every
input x, if

Pr[P ∗(x)↔ V (x) accepts] ≥ ε+ δ

then K(P ∗, x) outputs a w such that R(x,w) = 1 in average time at most

es · (nO(1) + t) · δ−1

In the definition, giving P ∗ as an input to K means to give the code of P ∗ to K. A stronger
definition, which is satisfied by all the proof systems we shall see, is to let K be an oracle algorithm
of complexity δ−1 · es · poly(n), and allow K to have oracle access to P ∗. In such a case, “oracle
access to a prover strategy” means that K is allowed to select the randomness used by P ∗, to fix
an initial part of the interaction, and then obtain as an answer what the next response from P ∗

would be given the randomness and the initial interaction.

Theorem 6 The protocol for quadratic residuosity of the previous section is a proof of knowledge
with knowledge error 1/2 and extractor slowdown 2.

Proof: Consider an a such that the prover returns the correct answer both when b = 0 and b = 1.
More precisely, when b = 0, prover returns a in the third round of the interaction and if b = 1,
prover returns a.r in the third round of interaction. If we can find such an a, then upon dividing
the answers (for the cases when b = 1 and b = 0) returned by the prover strategy in third round,
we can get the value of r. Note that if verifier V accepts with probability 1

2 + δ, then by a Markov
argument, we get that with probability δ, a randomly chosen a ∈ Z∗n is such that for both b = 0 and
b = 1, the prover returns the correct answer. Clearly, the knowledge error of the protocol is 1

2 and
for one particular a, the prover strategy is executed twice. So, the extractor slowdown is 2. Note
that in expectation, we will be sampling about 1

δ times before we get an a with the aforementioned

property. Hence, the total expected time for running K is 2 · ((logN)O(1) + t) · δ−1 �

6

