
U.C. Berkeley — CS172: Automata, Computability and Complexity Handout 2
Professor Luca Trevisan 2/10/2015

Notes on Streaming Algorithms

A streaming algorithm is an algorithm that receives its input as a “stream” of data, and that
proceeds by making only one pass through the data. As for any other kind of algorithm, we want
to design streaming algorithms that are fast and that use as little memory as possible. A DFA
is a streaming algorithm that uses a constant amount of memory, processes each data item in its
input stream in constant time, and solves a decision problem defined on the input. In general, we
are interested in streaming algorithms for numerical computations, and other computations with
a non-binary output, and we are interested in algorithm whose memory use and processing-time-
per-input-item are not constants, as long as we can make them feasibly small even for very large
streams.

The streaming model is appropriate for settings in which the data to be processed is not stored
anywhere but it is generated dynamically, and fed to the streaming algorithm as it is being gener-
ated. Typical examples are the stream of measurements from a sensor network, stream of trans-
actions from a online store, of search strings in a search engine, of page requests coming to a web
server, and so on.

In this lecture we will see how to apply the Myhill-Nerode theorem and the ideas in its proof
to argue about memory lower bounds for streaming algorithms.

1 Most Frequent Element

An example of a simple but non-trivial streaming algorithm is given by the following typical inter-
view question: suppose we are allowed to make one pass through a sequence x1, . . . , xn of elements
from a set Σ, and that we know that one value from Σ occurs more than n/2 times in the sequence;
find the most frequently repeated value using only two variables, using a total memory of only
log2 n + log2 |Σ| bits. (If you haven’t seen this puzzle before, think about how you would do it.)

The problem of finding a most frequently occurring element (MFE) in a data stream is an
important one in many of the settings that motivate the streaming model. (Think of keeping track
of the page that receives the most hits, or the best selling item, etc.) In general, that is, without
the guarantee that there is an element occurring in a majority of places in the sequence, there is,
unfortunately, no memory-efficient way to find a most frequent element.

We will show that every deterministic streaming algorithm that solves the MFE problem must
use at least Ω(n · `) bits of memory, where n is the length of the strings and ` = log2 |Σ| is the
bit-length of one element of Σ. We will assume 2` > n2.

We will prove the memory lower bound by relating the amount of memory needed by a streaming
algorithm for MFE to the number of states needed by any DFA for a related problem. Let’s identify
Σ with the set {0, . . . , 2` − 1}.

Definition 1 For every n, Σ, define the language Ln,Σ ⊆ Σn of sequences x1, . . . , xn, xi ∈ Σ in
which 0 is a most frequently occurring algorithms.

Fact 2 Suppose that there is a deterministic streaming algorithm for MFE that uses ≤ m(n,Σ)
bits of memory; then there is a DFA for Ln,Σ that has ≤ 2m(n,Σ)+logn states.

Notes for Lecture 2 2

Proof: First we modify the algorithm to make sure that it rejects all inputs of length ≥ n, which
we can do by adding a counter that uses log n bits. A streaming algorithm that uses m bits of
memory has only 2m distinct internal states, and so we can construct an automaton with 2m+logn

states that can simulate the execution of the algorithm on inputs of length ≤ n and rejects inputs
of length > n; at the end of sequences of length ≤ n, we define the internal states that lead the
algorithm to output 0 as accepting states for the DFA, the others are not accepting. This automaton
recognizes the language Ln,Σ. �

Now we can apply the Myhill-Nerode theorem to Ln,Σ.

Lemma 3 The language Ln,Σ has 2Ω(n`) distinguishable strings.

Proof: For every subset S = {s1, . . . , s(n−5)/2} ⊂ Σ− {0} of n−5
2 nonzero elements of Σ, consider

the sequence

xS := 0, 0, 0, s1, s1, . . . , sn−5
2
, sn−5

2

of length n−2 where 0 is repeated 3 times, the elements of S are repeated twice each, and no other
element is present.

We see that all such sequences are distinguishable strings for Ln,Σ, because if we consider any
two different sequences xS and xT , and we take an element s which belongs to S but not to T , we
see that attaching (s, s) to xS gives us a sequence not in Ln,Σ (because the most frequent element
is s 6= 0, which occurs 4 times), while attaching (s, s) to xT gives us an element of Ln,Σ, because 0
occurs 3 times and all other elements occur only once.

The number of distinguishable strings that we have constructed is(
2` − 1
n−5

2

)
≥

(
2` − 1

e ·
(
n−5

2

))n−5
2

≥ 2Ω(n`)

where we use the fact that
(
N
K

)
≥
(

N
eK

)K
and the assumption that 2` > n2, so that(

2` − 1

e ·
(
n−5

2

)) ≥ Ω(2`/2)

�

Putting all together we have.

Theorem 4 Every deterministic streaming algorithm for the MFE problem requires memory Ω(n`),
where n is the length of the stream and ` is the bit-length of each data item, assuming 2` > n2.

2 Number of Distinct Elements

Another useful computation to make over a data stream is to figure out how many distinct elements
(DE) there are in the stream. For example, from a stream of page requests we would like to know
from how many distinct IP address we are getting requests, as a first approximation of the number
of unique readers.

For simplicity, we will continue to work with the assumption |Σ| = 2` > n2.
To prove lower bounds for this problem, instead of reducing to a regular language and finding

distinguishable strings for it, we will reason directly about the streaming algorithm.

Notes for Lecture 2 3

Definition 5 We say that two streams x, y are distinguishable for a streaming problem P on
inputs of length n, if there is a stream z such that all the correct answers to problem P for input
x · z are different from all the correct answers to problem P for input y · z, and the streams x · z
and y · z have length n.

So two streams x, y are distinguishable for the MFE problem if there is a stream z such that
none of the most frequent elements of x · z is also a most frequent element of y · z. Two streams
x, y are distinguishable for the DE problem if there is a stream z such that the number of distinct
elements in x · z is different from the number of distinct element of y · z.

The following fact gives us a way to prove memory lower bounds.

Lemma 6 Suppose that we can find D(n,Σ) strings in Σ∗ that are distinguishable for problem P
on inputs of length n. Then, every deterministic streaming algorithm for P must use ≥ log2 D(n,Σ)
memory on inputs of length n.

Proof: Suppose that we have a streaming algorithm A that uses m(n,Σ) < log2 D(n,Σ) bits of
memory and solves P on inputs of length n. Then A has ≤ 2m(n,Σ) < D(n,Σ) distinct internal
states, and there are two distinguishable strings x and y such that A is in the same internal state
after reading x and after reading y. This means that, for every z, A gives the same output for the
input x · z and the input y · z. So, for every z, there must be an output that is correct both for the
input x · z and the input y · z, contradicting the distinguishability of x and y. �

Note that we could have derived the lower bound for MFE from Lemmas 3 and 6 without
reducing to a regular language.

Theorem 7 There are 2Ω(n`) distinguishable strings for the DE problem on inputs of length n,
hence the DE problem requires Ω(n`) bits of memory for every deterministic streaming algorithm.

Proof: For every subset S = {s1, . . . , sn/2} ⊆ Σ of size n/2, consider the sequence xS =
s1, . . . , sn/2. For every two sequences xS and xT , we can see that they are distinguishable, because
xS · xS has n/2 distinct elements, and xT · xS has strictly more than n/2 distinct elements.

The number of distinguishable strings we have constructed is(
2`

n
2

)
≥
(

2 · 2`

en

)n/2

≥ 2Ω(n`)

�

What about approximating the number of distinct elements?

Theorem 8 There are 2Ω(n`) distinguishable strings for the problem of approximating DE within
a ±20% relative error on inputs of length n, hence the DE problem requires Ω(n`) bits of memory
for every deterministic streaming algorithm.

Proof: We will use the following fact without proof: under the usual assumption 2` > n2, there
is a collection S of 2Ω(nl) subsets of Σ, each of size n/2, and such that every two sets S, T ∈ S have
at most n/10 elements in common.

Now, for every set S ∈ S, consider the sequence xS = s1, . . . , sn/2. For every two sequences xS

and xT , we can see that they are distinguishable, because xS ·xS has n/2 distinct elements, and so
the range of possible answers of a 20%-approximate algorithm is between .4n and .6n, while xT ·xS

Notes for Lecture 2 4

has at least .9n distinct elements and so the range of valid answers is between .72n and 1.08n, so
no answer can be valid for both sequences. �

The DE problem, however, admits very efficient randomized approximate streaming algorithms.
For example, it is possible to achieve a 1% approximation with high probability using only O(` +
log n) bits of memory.

The basic idea is to randomly pick a hash function h : Σ → [0, 1] that randomly maps data
items to reals in the range of 0 to 1. Then, given a sequence x1, . . . , xn, we compute h(xi) for each
i, and store the minimum hash value m; the output is 1/m.

The point of the algorithm is that (assuming h to be a perfectly random hash function), the
process of evaluating h(xi) for each i and defining m to be the minimum is the same probabilistic
process as picking k random real numbers in [0, 1], where k is the number of distinct elements in
x1, . . . , xn, then defining m to be the minimum.

The latter process is well understood, and m tends to be approximately 1/k, so that 1/m is an
approximation to k.

Here is a simplified version of the analysis: we want to show that there is a good probability
that the minimum of k random real numbers in the range [0, 1] is Ω(1/k) and O(1/k). First, we
see that the probability that the minimum is more than 5/k is(

1− 5

k

)k

≤ e−5 < 0.007

and the probability that the minimum is less than 1/10k is at most 1/10.
The storage required to implement the algorithm is the memory used to store h, plus the

memory needed to store the current minimum. Real numbers are represented with finite precision,
which affects the algorithm negligibly, and h is picked not as a completely random function (which
would require storage space proportional to |Σ|) but as “pairwise independent” hash function, which
requires storage O(log |Σ|). The analysis of the completely random case needs to be adjust to deal
with the more limited randomness property of the hash function used in the implementation.

Both the probability of finding a good approximation and the range of approximation can be
improved with various techniques.

