
U.C. Berkeley — CS172: Automata, Computability and Complexity Handout 3
Professor Luca Trevisan 3/3/2015

Notes on Rice’s Theorem

Consider any kind of software testing problem. Its description will typically start as “For a
given program decide whether the function it computes is . . . ”. In the setting of Turing machines,
we often encounter natural problems of the form “Decide if the language recognized by a given
Turing machine 〈M〉” Rice’s theorem proves in one clean sweep that all these problems are
undecidable. That is, whenever we have a decision problem in which we are given a Turing machine
and we are asked to determine a property of the language recognized by the machine, that decision
problem is always undecidable. The only exceptions will be the trivial properties that are always
true or always false.

We use the following notation. If M is a Turing machine with input alphabet Σ, then L(M) ⊆ Σ∗

is the language recognized by M , that is, the set of strings that are accepted by M .

Theorem 1 Let C be a set of languages. Consider the language LC defined as follows

LC = {〈M〉 | L(M) ∈ C} .

Then either LC is empty, or it contains the descriptions of all Turing machines, or it is undecidable.

To make sense of the statement of the theorem, think of a property of languages that you would
like to test. For example the property of being regular. Then define C to be the set of all languages
with that property. (In the example, C would be the set of regular languages.) Now, LC is the
language of (representations of) Turing machines that recognize languages having the property. (In
the example, LC would be the language of Turing machines that recognize regular languages.) The
theorem says that unless every Turing machine recognizes a language with the property (not true
for regular languages) and unless no Turing machine recognizes a language with the property (not
true for regular languages), then LC is undecidable. (So it is undecidable to tell whether a given
Turing machine recognizes a regular language or not.)

Think of all the corollaries that you can infer from Rice’s Theorem. It is undecidable to
determine whether a given Turing machine accepts a finite or infinite number of inputs. It is
undecidable to determine whether a given Turing machine accepts only (representations of) prime
numbers, and so on.

Proof: Suppose towards a contradiction that for same class C the language LC is not empty, it
does not contain the descriptions of all Turing machines, and it is decidable. Then LC̄ is also not
empty, not containing all Turing machines, and decidable.

Suppose that ∅ 6∈ C, otherwise apply the argument below to LC̄ instead of LC .
Let Min be a machine such that 〈Min〉 is in LC .
We will show that the Acceptance problem is decidable, and so we will reach a contradiction.
Given an input (〈M〉, w) for the Acceptance problem, we constract a new Turing machine Mw

that does the following: on input x, Mw first simulates the behaviour of M on input w and

• If M on input w loops, then so does Mw;

• If M on input w rejects, then so does Mw;

1

• If M on input w accepts, then Mw continues with a simulation of Min on input x.

In summary:

• If M accepts w, then Mw behaves like Min, and Mw accepts an input x if and only if Min

does. In other words, L(Mw) = L(Min) ∈ C and so 〈Mw〉 ∈ LC ;

• if M does not accept w, then Mw does not accept any input, and L(Mw) = ∅ 6∈ C, which
implies 〈Mw〉 6∈ LC .

We have proved that (〈M〉, w) ∈ A if and only if 〈Mw〉 ∈ LC , and so A would be decidable if
LC were decidable. We have reached a contradiction. �

2

