
U.C. Berkeley — CS172: Automata, Computability and Complexity Handout 11
Professor Luca Trevisan 4/30/2015

Notes on the PCP Theorem and Complexity of Approximations

These notes combine sections from a survey paper on hardness of approximation that I wrote
in 2010 and notes for a graduate complexity theory from 2008. This material is not part of the
syllabus of CS172.

1 Hardness of Approximation

We know that a number of important optimization problems are NP-hard to solve exactly. Today
we begin the study of the complexity of finding approximate solutions.

There is a fundamental difficulty in proving hardness of approximation results. All the NP-
completeness proofs for graph problems before 1990 can be essentially described as follows: we
start from the computation of a generic non-deterministic Turing machine, then we encode its
computation as a 3SAT formula, using the construction of Cook’s theorem, and then we reduce
3SAT to the problem of interest (the reduction may be presented as a sequence of reductions
involving several intermediate problems, but it can always be thought of as a direct reduction from
3SAT) by encoding variables and clauses of the formula as sub-graphs connected in a proper way.
The computation of a Turing machine is very sensitive to small changes, and it seems impossible to
generate an inapproximability gap starting from a fragile model and applying “local” reductions.
The only inapproximability results that can be proved with such reductions are for problems that
remain NP-hard even restricted to instances where the optimum is a small constant. For example,
in the Metric Min k-Center problem it is NP-hard to decide whether the optimum has cost 1 or
2, and so no algorithm can have a performance ratio smaller than 2 unless P = NP [9]. Similarly,
in the Coloring problem it is NP-hard to decide wether the optimum has cost 3 or 4, and so no
algorithm has performance ratio smaller than 4/3 unless P = NP, and Garey and Johnson [8]
show that the gap can be “amplified” to k versus 2k − 4 for constant k, ruling out also algorithms
with performance ratio smaller than 2. Most interesting problems, however, become trivial when
restricted to inputs where the optimum is a constant.

To prove more general inapproximability results it seemed necessary to first find a machine
model for NP in which accepting computations would be “very far” from rejecting computations.
Before such a model was discovered, an important piece of work on inapproximability was due
to Papadimitriou and Yannakakis, who showed that, assuming that Max 3SAT does not have a
PTAS,1 then several other problems do not have a PTAS [14]. Berman and Schnitger [3] proved
that if Max 2SAT does not have a PTAS then, for some c > 0, the Independent Set problem cannot
be approximated within a factor nc.

The modern study of inapproximability was made possible by the discovery, due to Feige et
al. [6] in 1990, that probabilistic proof systems could give a robust model for NP that could be
used to prove an inapproximability result for the Independent Set problem.2 A year later, Arora et
al. [2, 1] proved the PCP Theorem, a very strong characterization of NP in terms of proof systems,
and showed how to use the PCP Theorem to prove that Max 3SAT does not have a PTAS. Using

1PTAS, short for Polynomial Time Approximation Scheme, is an algorithm that given an instance x and a pa-
rameter ε runs in time polynomial in n, but with an arbitrary dependency on ε, and returns a (1 + ε)-approximate
solution.

2Another, less influential, connection between probabilistic proof checking and inapproximability was discovered
around the same time by Condon [5].

1

the reductions of [14] (and others [13, 4]), the PCP Theorem gave inapproximability results for
several other problems.

2 Probabilistically Checkable Proofs

Probabilistically checkable proofs (PCPs) provide a “robust” characterization of the class NP.
When we reduce a generic NP problem L to 3SAT using Cook’s theorem, we give a way to
transform an instance x into a 3CNF formula φx so that if x ∈ L then φx is satisfiable, and if x 6∈ L
then φx is not satisfiable. Following the proof of Cook’s theorem, however, we see that it is always
easy (even when x 6∈ L) to construct an assignment that satisfies all the clauses of φx except one.

Using the PCP Theorem one can prove a stronger version of Cook’s theorem, that states that,
in the above reduction, if x ∈ L then φx is satisfiable, and if x 6∈ L then there is no assignment
that satisfies even a 1 − ε fraction of clauses of φx, where ε > 0 is a fixed constant that does not
depend on x. This immediately implies that Max 3SAT does not have a PTAS (unless P = NP),
and that several other problems do not have a PTAS either (unless P = NP), using the reductions
of Papadimitrious and Yannakakis [14] and others.

We define PCPs by considering a probabilistic modification of the definition of NP. We consider
probabilistic polynomial time verifiers V that are given an input x and “oracle access” to a witness
string w. We model the fact that V is a probabilistic algorithm by assuming that V , besides the
input x and the witness w, takes an additional input R, that is a sequence of random bits. Then
V performs a deterministic computation based on x, w and R. For fixed w and x, when we say
“V w(x) accepts” we mean “the event that V accepts when given oracle access to witness w, input
x, and a uniformly distributed random input R.” When we refer to the “probability that V w(x)
accepts,” we take the probability over the choices of R.

We say that a verifier is (r(n), q(n))-restricted if, for every input x of length n and for every w,
V w(x) makes at most q(n) queries into w and uses at most r(n) random bits.

We define the class PCP[r(n), q(n)] as follows. A language L is in PCP[r(n), q(n)] if there is
an (r(n), q(n))-restricted verifier V such that if x ∈ L, then there is w such that V w(x) accepts
with probability 1 and if x 6∈ L then for every w the probability that V w(x) accepts is ≤ 1/2.

We also consider the following more refined notation. We say that a language L is in PCPc(n),s(n)[r(n), q(n)]
if there is an (r(n), q(n))-restricted verifier V such that if x ∈ L, then there is w such that V w(x)
accepts with probability at least c(n), and if x 6∈ L then for every w the probability that V w(x)
accepts is at most s(n). Of course, the definition makes sense only if 0 ≤ s(n) < c(n) ≤ 1 for every
n. The parameter c(n) is called the completeness of the verifier and the parameter s(n) is called
the soundness error, or simply the soundness of the verifier.

Note that if r(n) = O(log n) then the proof-checking can be derandomized, that is, V can
be simulated by a polynomial time deterministic verifier that simulates the computation of V on
each of the 2r(n) = nO(1) possible random inputs and then computes the probability that V w(x)
accepts, and then accepts if and only if this probability is one. It then follows that, for example,
PCP[O(log n), O(log n)] ⊆ NP. The PCP Theorem shows a surprising converse.

Theorem 1 (PCP Theorem) NP = PCP[O(log n), O(1)].

The theorem was proved in [2, 1], motivated by a relation between PCP and approximation
discovered in [6], and based on much previous work. In the notes for the past lectures we discussed
the historical context

2

3 PCP and the Approximability of Constraint Satisfaction Prob-
lem

In the Max 3SAT problem we are given a 3CNF boolean formula, that is, a boolean formula in
conjunctive normal form (AND-of-OR of literals, where a literal is either a variable or the negation
of a variable) such that each term in the conjunction is the OR of at most three literals. The goal
is to find an assignment that satisfies the largest possible number of terms.

In the Max qCSP problem, where q is a positive integer, we are given a system of boolean
constraints defined over boolean variables such that every constraints involves at most q variables.
The goal is to find an assignment that satisfies as many constraints as possible. Note that Max
3SAT is a special case of Max 3CSP. (View each clause as a constraint.)

Theorem 2 The PCP Theorem implies that there is a constant q such that there is no a-approximate
algorithm for Max qCSP with a < 2, unless P = NP.

Proof: Let L ∈ PCP[O(log n), q] be an NP-complete problem, where q is a constant, and let V
be the (O(log n), q)-restricted verifier for L. We describe a reduction from L to Max qCSP.

Given an instance z of L, our plan is to construct a Max qCSP instance Iz with m = |z|O(1)

constraints such that
z ∈ L ⇒ Iz is satisfiable
z /∈ L ⇒ optMax qCSP(Iz) ≤ m

2

(1)

Once (1) is proved, the theorem follows.
We enumerate all random inputs R for V . The length of each string is r(|z|) = O(log |z|), so

the number of such strings is polynomial in |z|. For each R, V chooses q positions iR1 , . . . , i
R
q and

a Boolean function fR : {0, 1}q → {0, 1} and accepts iff fR(wiR1
, . . . , wiRq) = 1.

We want to simulate the possible computation of the verifier (for different random inputs R
and different witnesses w) as a Boolean formula. We introduce Boolean variables x1, . . . , x`, where
` is the length of the witness w.

For every R we add the constraint fR(xiR1
, . . . , xiRq) = 1. This completes the description of Iz.

Now, if z ∈ L, then there is a witness w that is accepted by V with probability 1. Consider
the assignment xi ← wi, where wi is the i-th bit of w: then such an assignment satisfies all the
constraints of Iz.

If Iz has an assignment xi ← ai that satisfies more than m/2 constraints, then the witness w
defined as wi := ai is accepted with probability more than 1/2 by V , which implies that z ∈ L. So
if z 6∈ L then Iz has no assignment that satisfies more than m/2 constraints. �

Theorem 3 The PCP Theorem implies that is an ε1 > 0 such that there is no polynomial time
(1 + ε1)-approximate algorithm for Max-3SAT, unless P = NP.

Proof: Given an instance I of Max qCSP (where q is the constant in the PCP Theorem) over
variables x1, . . . , xn and with m constraints, we show how to construct an instance φI of Max 3SAT
with m′ clauses such that

I is satisfiable ⇒ φI is satisfiable
optMax qCSP(I) ≤ m

2 ⇒ optMax 3SAT(φI) ≤ (1− ε1)m′
(2)

Once (2) is proved, the theorem follows.

3

For every constraint f(xi1 , . . . , xiq) = 1 in I, we first construct an equivalent qCNF of size
≤ 2q. Then we “convert” clauses of length q to clauses length 3, which can be done by introducing
additional variables, as in the standard reduction from kSAT to 3SAT (for example x2∨x10∨x11∨x12

becomes (x2 ∨ x10 ∨ yR)∧ (ȳR ∨ x11 ∨ x12)). Overall, this transformation creates a formula φI with
at most q2q 3CNF clauses for each constraint in I, so the total number of clauses in φI is at most
q · 2q ·m.

Let us now see the relation between the optimum of φz as an instance of Max 3SAT and the
optimum of I as an instance of Max qCSP.

If I is satisfiable, then set the x variables in φI to the same values and set the auxiliary variables
appropriately, then the assignment satisfies all clauses, and φI is satisfiable.

If every assignment of I contradicts at least half of the constraints, then consider an arbitrary
assignment to the variables of φ; the restriction of the assigment to the x variables contradicts at
least m/2 constraints of I, and so at least m/2 of the clauses of φI are also contradicted. The
number m′ −m/2 is at most m′(1− ε1) if we choose ε1 ≤ 1

2q2q . �

Interestingly, the converse also holds: any gap-creating reduction from an NP-complete problem
to Max qCSP implies that the PCP Theorem must be true.

Theorem 4 If there is a reduction as in (1) for some problem L in NP, then L ∈ PCP[O(log n), q].
In particular, if L is NP-complete then the PCP Theorem holds.

Proof: We describe how to construct a verifier for L. V on input z expects w to be a satisfying
assignment for Iz. V picks a constraint of at random, and checks that the assignment xi ← wi
satisfies it. The number of random bits used by the verifier is logm = O(log |z|). The number of
bits of the witness that are read by the verifier is q.

z ∈ L ⇒ Iz is satisfiable
⇒ ∃w such thatV w(z) always accept.

z /∈ L ⇒ ∀w a fraction 1
2 of constraints of Iz are unsatisfied by w

⇒ ∀w V w(z) rejects with probability ≥ 1
2

�

4 Irit Dinur’s Proof of the PCP Theorem

In this section we outline the proof of the PCP theorem.

Theorem 5 NP ⊆ PCPc=1,s= 1
2
(O(log(n)), O(1))

To do this we will construct instances of constraint satisfaction problems (CSPs) for which it is
hard to distinguish the case in which the CSP is satisfiable from the case in which every assignment
contradicts a constant fraction of constraints.

We will work with the type of CSPs where each constraint has two variables, but where each
variable can take on a non-boolean (but constant-size) range of values.

Definition 6 Max Cut
Input: variables x1, . . . , xn that range over Σ, a collection of binary constraints.
Goal: find an assignment that maximizes that number of satisfied constaints.

4

Definition 7 If C is a CSP, we call opt(MaxC) the fraction of constraints which are satisfied by
the optimal assignment.

The following is the version of the PCP Theorem that we will prove.

Theorem 8 There exists a Σ0, a polynomial time reduction R, and a δ0 > 0 such that

• R is a reduction from 3-coloring to Max Cut0.

• If G is 3-colorable, then R(G) is satisfiable.

• If G is not 3-colorable, then opt(C) ≤ 1− δ0.

This theorem implies the PCP theorem because given a graph G, we can define a valid proof to
be a binary encoding of a solution to the constraint satisfaction problem R(G). Given an alleged
proof, the verifier randomly picks O(1

δ0
) constraints to check, reads an assignment for the variables

in such constraints from the proof, and accepts if and only if all constraints are satisfied.
The verifier uses O(log(n)) random bits and reads O(1

δ0
log |Σ0|) bits of the proof. (We assume

that the assignment to the n variables is encoded as a string of n log |Σ0| bits.) If R works as in the
theorem statement, then if G is three colorable, the CSP is satisfiable and there exists a valid proof
that is accepted with probability 1. Furthermore, if G is not three colorable, then, for every alleged
proof, a δ0 fraction of the constraints in R(G) will not be satisfied. Therefore, with probability at
least 1

2 the verifier will choose a constraints that is not satisfied, and thus reject.
Observe that 2-CSP-{a, b, c} is at least as hard is 3-coloring because 3-coloring can be set up

as a 2-CSP over a three-element range. We see from the theorem statement that

• opt(G) = 1⇒ opt(R(G)) = 1.

• opt(G) ≤ 1− 1
|E| ⇒ opt(R(G)) ≤ 1− δ0.

The idea will be to create R by amplifying the fraction of unsatisfied constraints by a constant factor
while only increasing the number of constraints by a linear amount and applying this amplification
a logarithmic number of times. We can restate the theorem as follows:

Theorem 9 (restated) There is δ0, Σ0, |Σ0| ≥ 3, and polynomial time R mapping inputs of Max
Cut0 to Max Cut0 such that

1. # of constraints of R(MaxC) = O(#of constraints of R(MaxC)).

2. opt(MaxC) = 1⇒ opt(R(G)) = 1.

3. opt(MaxC) ≤ 1− δ ⇒ opt(R(MaxC)) ≤ 1− 2δ if δ < δ0.

We prove this theorem using two lemmas. The first lemma will amplify the number of unsat-
isfiable constraints, but will also increase the range size. The second lemma will reduce the range
size, but will decrease the number of unsatisfiable constraints.

Lemma 10 (Amplification) ∀Σ0, ∀c, there exists Σ and a poly-time R1, mapping Max Cut0 to
Max Cut such that R satisfies 1) and 2) in Theorem 9 and opt(MaxC) ≤ 1−δ ⇒ opt(R1(MaxC)) ≤
1− cδ provided that c ≤ δ0.

5

Lemma 11 (Range Reduction) ∃Σ0, ∃c0, such that for all Σ, there exists a poly-time R2, map-
ping Max Cut to Max Cut0 such that R satisfies 1) and 2) in Theorem 9 and opt(MaxC) ≤ 1−δ ⇒
opt(R2(MaxC)) ≤ 1− δ/c0.

To get the theorem from these two lemmas, let c = 2c0 in Lemma 10, then the composition
R2(R1(·)) solves the theorem because:

opt(MaxC) ≤ 1− δ ⇒ opt(R1(MaxC)) ≤ 1− cδ = 1− 2c0δ ⇒ opt(R2(R1(MaxC))) ≤ 1− 2δ

5 Basic Reductions

We have seen that the PCP Theorem is equivalent to the inapproximability of Max 3SAT and
other constraint satisfaction problems. In this section we will see several reductions that prove
inapproximability results for other problems.

5.1 Max 3SAT with Bounded Occurrences

We begin with a reduction from the Max E3SAT problem on general instances to the restriction
of Max E3SAT to instances in which every variable occurrs only in a bounded number of clauses.
The latter problem will be a useful starting point for other reductions.

For the reduction we will need expander graphs of the following type.

Definition 12 (Expander Graph) An undirected graph G = (V,E) is a 1-expander if, for every
subset S ⊆ V , |S| ≤ |V |/2, the number of edges e(S, V − S) having one endpoint in S and one in
V − S is at least |S|.

For our purposes, it will be acceptable for the expander graph to have multiple edges. It is easy to
prove the existence of constant-degree 1-expanders using the probabilistic method. Polynomial-time
constructible 1-expanders of constant degree can be derived from [7], and, with a smaller degree,
from [12]. Let d be a constant for which degree-d 1-expanders can be constructed in polynomial
time. (d = 14 suffices using the construction of [12].)

Let now φ be an instance of 3SAT with n variables x1, . . . , xn and m clauses. For each variable
xi, let occi be the number of occurrences of xi, that is, the number of clauses that involve the
literal xi or the literal x̄i. We write xi ∈ Cj if the variable xi occurs in clause Cj . Notice that∑n

i=1 occi = 3m. For each i, construct a 1-expander graph Gi = (Vi, Ei) where Vi has occi vertices,
one for each occurrence of xi in φ. We denote the vertices of Vi as pairs [i, j] such that xi occurrs
in Cj . Each of these graphs has constant degree d.

We define a new instance ψ of Max E3SAT with N = 3m variables Y = {yi,j}i∈[n],xi∈Cj , one
for each occurrence of each variable in φ. For each clause of φ we put an equivalent clause in ψ.
That is, if Cj = (xa ∨xb ∨xc) is a clause in φ, then (ya,j ∨ yb,j ∨ yc,j) is a clause in ψ. We call these
clauses the primary clauses of ψ. Note that each variable of ψ occurs only in one primary clause.

To complete the construction of ψ, for every variable xi in φ, and for every edge ([i, j], [i, j′])
in the graph Gi, we add the clauses (yi,j ∨ ȳi′,j) and (ȳi,j ∨ yi′,j) to ψ. We call these clauses the
consistency clauses of ψ. Notice that if yi,j = yi′,j then both consistency clauses are satisfied, while
if yi,j 6= yi′,j then one of the two consistency clauses is contradicted.

This completes the construction of ψ. By construction, every variable occurrs in at most 2d+ 1
clauses of ψ, and ψ has M = m+ 3dm clauses.

6

We now claim that the cost of an optimum solution in ψ is determined by the cost of an optimum
solution in φ and, furthermore, that a good approximation algorithm applied to ψ returns a good
approximation for φ. We prove the claim in two steps.

Claim 13 If there is an assignment for φ that satisfies m− k clauses, then there is an assignment
for ψ that satisfies ≥M − k clauses.

Proof: This part of the proof is simple: take the assignment for φ and then for every variable yi,j
of ψ give to it the value that the assignment gives to xi. This assignment satisfies all the consistency
clauses and all but k of the remaining clauses. �

Claim 14 If there is an assignment for ψ that leaves k clauses not satisfied, then there is an
assignment for φ that leaves ≤ k clauses not satisfied.

Proof: This is the interesting part of the proof. Let ai,j be the value assigned to yi,j . We first
“round” the assignment so that all the consistency clauses are satisfied. This is done by defining
an assignment bi, where, for every i, the value bi is taken to be the majority value of ai,j over all
j such that xi ∈ Cj , and we assign the value bi to all the variables yi,j . The assignment bi satisfies
all the consistency clauses, but it is possible that it contradicts some primary clauses that were
satisfied by ai,j . We claim that, overall, the bi assignment satisfies at least as many clauses as the
ai,j assignment. Indeed, for each i, if bi differs from the ai,j for, say, t values of j, then there can
be at most t primary clauses that were satisfied by ai,j but are contradicted by bi. On the other
hand, because of the consistency clauses being laid out as the edges of a 1-expander graph, at least
t consistency clauses are contradicted by the ai,j assignment for that value of i alone, and so, the
bi assignment can be no worse.

We conclude that bi assignment contradicts no more clauses of ψ than are contradicted by ai,j ,
that is, no more than k clauses. When we apply bi as an assignment for φ, we see that bi contradicts
at most k clauses of φ. �

In conclusion:

• If φ is satisfiable then ψ is satisfiable;

• If every assignment contradicts at least an ε fraction of the clauses of φ, then every assignment
contradicts at least an ε/(1 + 3d) fraction of the clauses of ψ.

Theorem 15 There are constants d and ε2 and a polynomial time computable reduction from 3SAT
to Max 3SAT-d such that if φ is satisfiable then f(φ) is satisfiable, and if φ is not satisfiable then
the optimum of f(φ) is less than 1 − ε2 times the number of clauses. In particular, if there is an
approximation algorithm for Max 3SAT-d with performance ratio better than (1−ε2), then P = NP.

5.2 Vertex Cover and Independent Set

In an undirected graph G = (V,E) a vertex cover is a set C ⊆ V such that for every edge (u, v) ∈ E
we have either u ∈ C or v ∈ C, possibly both. An independent set is a set S ⊆ V such that for
every two vertices u, v ∈ S we have (u, v) 6∈ E. It is easy to see that a set C is a vertex cover in G
if and only if V −C is an independent set. It then follows that the problem of finding a minimum
size vertex cover is the same as the problem of finding a maximum size independent set. From the
point of view of approximation, however, the two problems are not equivalent: the Vertex Cover

7

x
1

x
3

x
3

x
5

x
2

x
4 x

5

x
1

x
1

x
3

x
5

x
2

Figure 1: Graph construction corresponding to the 3CNF formula ϕ = (x1 ∨ x2 ∨ x̄3) ∧
(x2 ∨ x3 ∨ x̄5) ∧ (x̄1 ∨ x4 ∨ x5) ∧ (x̄1 ∨ x̄3 ∨ x5).

problem has a 2-approximate algorithm (but, as we see below, it has no PTAS unless P = NP),
while the Independent Set problem has no constant-factor approximation unless P = NP.

We give a reduction from Max E3SAT to Independent Set. The reduction will also prove
intractability of Vertex Cover. If we start from an instance of Max E3SAT-d we will get a bounded
degree graph, but the reduction works in any case. The reduction appeared in [14], and it is similar
to the original proof of NP-completeness of Vertex Cover and Independent Set [11].

Starting from an instance φ of E3SAT with n variables and m clauses, we constuct a graph
with 3m vertices; the graph has a vertex vi,j for every occurrence of a variable xi in a clause Cj .
For each clause Cj , the three vertices corresponding to the three literals in the clause are joined by
edges, and form a triangle (we call such edges clause edges). Furthermore, if a variable xi occurrs
positively in a clause Cj and negated in a clause Cj′ , then there is an edge between the vertices
vi,j and vi,j′ (we call such edges consistency edges). Let us call this graph Gφ. See Figure 1 for an
example of this construction.

Note that if every variable occurrs in at most d clauses then the graph has degree at most d+2.

Claim 16 There is an independent set of size ≥ t in Gφ if and only if there is an assignment that
satisfies ≥ t clauses in φ.

Proof: Suppose we have an assignment ai that satisfies t clauses. For each clause Cj , let us pick a
vertex vi,j that corresponds to a literal of Cj satisfied by ai. We claim that the set of picked vertices
is an independent set in Gφ. To prove the claim, we note that we picked at most one vertex from
each triangle, so that we do not violate any clause edge, and we picked vertices consistent with the
assignment, so that we could not violate any consistency edge.

For the other direction, suppose we have an independent set with t vertices. The vertices must
come from t different triangles, corresponding to t different clauses. We claim that we can satisfy
all such clauses. We do so by setting an assingment so that xi takes a value consistent with the
vertices vi,j in the independent set, if any. Since consistency edges cannot be violated, this is a well
defined assignment, and it satisfies t clauses. �

If we combine this reduction with Theorem 15, we get the following result.

Theorem 17 There is a polynomial time computable function mapping instances φ of 3SAT into
graphs Gφ of maximum degree d+ 2 such that if φ is satisfiable then Gφ has an independent set of
size at least N/3 (and a vertex over of size at most 2N/3, where N is the number of vertices, and
if φ is not satisfiable then every independent set in Gφ has size at most N · (1 − ε2)/3, and every
vertex cover has size at least N · (2 + ε2)/3. In particular, if there is an approximation algorithm

8

for Independent Set in degree-(d + 2) graphs with performance ratio better than 1/(1 − ε2), or if
there is an approximation algorithm for Vertex Cover in degree-(d + 2) graphs with performance
ratio better than 1 + ε2/2, then P = NP.

5.3 Steiner Tree

In the Steiner tree problem we are given a graph G = (V,E), with weights on the edges, and a
subset C ⊆ V of vertices. We want to find the tree of minimum cost that contains all the vertices
of C. This problem is different from the minimum spanning tree problem because the tree is not
required to contain the vertices in V −C, although it may contain some of them if this is convenient.
An interesting special cases (called Metric Steiner Tree) arises when E is the complete graph and
the weights are a metric. (That is, they satisfy the triangle inequality.) Without this restriction,
it is not hard to show that the problem cannot be approximated within any constant.

We describe a reduction from the Vertex Cover problem in bounded degree graphs to the Steiner
Tree problem. The reduction is due to Bern and Plassmann [4].

We start from a graph G = (V,E), and we assume that G is connected.3 We define a new graph
G′ that has |V |+ |E| vertices, that is, a vertex [v] for each vertex v of G and a vertex [u, v] for each
edge (u, v) of G.

The distances in G′ are defined as follows:

• For every edge (u, v) ∈ E, the vertices [u] and [u, v] are at distance one, and so are the vertices
[v] and [u, v].

• Any two vertices [u], [v] are at distance one.

• All other pairs of vertices are at distance two.

We let C be the set of vertices {[u, v] : (u, v) ∈ E}. This completes the description of the
instance of the Steiner Tree problem. Notice that, since all the distances are either one or two, they
satisfy the triangle inequality, and so the reduction always produces an instance of Metric Steiner
Tree.

Claim 18 If there is a vertex cover in G with k vertices, then there is a Steiner tree in G′ of cost
m+ k − 1.

Proof: Let S be the vertex cover. Consider the vertices {[v] : v ∈ S} and the vertices {[u, v] :
(u, v) ∈ E}, and consider the weight-one edges between them. We have described a connected
sub-graph of G′, because every vertex in {[u] : u ∈ S} is connected to every other vertex in the
same set, and every vertex [u, v] is connected to a vertex in {[u] : u ∈ S}. Let us take any spanning
tree of this subgraph. It has m+ k− 1 edges of weight one, and so it is of cost m+ k− 1, and it is
a feasible solution to the Steiner Tree problem. �

Claim 19 If there is a Steiner tree in G′ of cost ≤ m + k, then there is a vertex cover in G with
k vertices.

3We proved inapproximability of Vertex Cover without guaranteeing a connected graph. Clearly, if we have an
approximation algorithm that works only in connected graphs, we can make it work on general graphs with same
factor. It follows that any inapproximability for general graphs implies inapproximability of connected graphs with
the same factor.

9

Proof: Let T be a feasible Steiner tree. We first modify the tree so that it has no edge of cost 2.
We repeatedly apply the following steps.

• If there is an edge of cost 2 between a vertex [w] and a vertex [u, v], we remove it and add
the two edges ([w], [u]) and ([u], [u, v]) of cost 1.

• If there is an edge of cost 2 between a vertex [u, v] and a vertex [v, w], we remove it and add
the two edges ([u, v], [v]) and ([v], [v, w]) of cost 1.

• Finally, and this case is more interesting, if there is an edge of cost 2 between the vertices
[u, v] and [w, z], we remove the edge, and then we look at the two connected components into
which T has been broken. Some vertices [u, v] are in one component, and some vertices are
in the other. This corresponds to a partition of the edges of G into two subsets. Since G is
connected, we see that there must be two edges on different sides of the partition that share
an endpoint. Let these edges be (u, v) and (v, w) then we can reconnect T by adding the
edges ([u, v], [v]) and ([v], [v, w]).

We repeat the above steps until no edges of cost two remain. This process will not increase the
cost, and will return a connected graph. We can obtain a tree by removing edges, and improving
the cost, if necessary.

The final tree has only edges of weight one, and it has a cost ≤ m+ k − 1, so it follows that it
spans ≤ m+k vertices. The m vertices {[u, v] : (u, v) ∈ E} must be in the tree, so the tree has ≤ k
vertices [v]. Let S be the set of such vertices. We claim that this is a vertex cover for G. Indeed,
for every edge (u, v) in G, the vertex [u, v] is connected to v0 in the tree using only edges of weight
one, which means that either [u] or [v] is in the tree, and that either u or v is in S. �

If we combine the reduction with the results of Theorem 17, we prove the following theorem.

Theorem 20 There is a constant ε3 such that if there is a polynomial time (1 + ε3)-approximate
algorithm for Metric Steiner Tree then P = NP.

5.4 More About Independent Set

In this section we describe a direct reduction from PCP to the Independent Set problem. This
reduction is due to Feige et al. [6].

Let L be NP-complete, and V be a verifier showing that L ∈ PCPc,s[q(n), r(n)]. For an
input x, let us consider all possible computations of V w(x) over all possible proofs w; a complete
description of a computation of V is given by a specification of the randomness used by V , the
list of queries made by V into the proof, and the list of answers. Indeed, for a fixed input x, each
query is determined by x, the randomness, and the previous answers, so that it is enough to specify
the randomness and the answers in order to completely specify a computation. We call such a
description a configuration. Note that the total number of configuration is at most 2r(n) · 2q(n),
where n is the length of x.

Consider now the graph Gx that has a vertex for each accepting configuration of V on input
x, and has an edge between two configurations c, c′ if c and c′ are inconsistent, that is, if c and
c′ specify a query to the same location and two different answers to that query. We make the
following claims.

Claim 21 If x ∈ L, then Gx has an independent set of size ≥ c · 2r(n).

10

Proof: If x ∈ L, then there is a proof w such that V w(x) accepts with probability at least c, that
is, there is a proof w such that there are at least c · 2r(n) random inputs that make V w(x) accept.
This implies that there are at least c ·2r(n) mutually consistent configurations in the graph Gx, and
they form an independent set. �

Claim 22 If x 6∈ L, then every independent set of Gx has size ≤ s · 2r(n).

Proof: We prove the contrapositive: we assume that there is an independent set in Gx of size
≥ s·2r(n), and we show that this implies x ∈ L. Define a witness w as follows: for every configuration
in the independent set, fix the bits in w queried in the configuration according to the answers in the
configurations. Set the bits of w not queried in any configuration in the independent set arbitrarily,
for example set them all to zero. The s · 2r(n) configurations in the independent set correspond to
as many different random strings. When V w(x) picks any such random string, it accepts, and so
V w(x) accepts with probability at least s, implying x ∈ L. �

It follows that if there is a ρ-approximate algorithm for the independent set problem, then every
problem in PCPc,s[r(n), q(n)] can be solved in time poly(n, 2r(n)+q(n)), provided c/s < ρ.

From the PCP Theorem we immediately get that there cannot be a ρ-approximate algorithm
for the independent set problem with ρ < 2 unless P = NP, but we can do better.

Suppose that V is a (O(log n), O(1))-restricted verifier for an NP-complete problem, and that
V has soundness 1/2 and completeness 1. Define a new verifier V ′ that performs two independent
repetitions of the computation of V , and that accepts if and only if both repetitions accept. Then
V ′ has clearly soundness 1/4 and completeness 1, and it is still (O(log n), O(1))-restricted, thus
showing that even an approximation better than 4 is infeasible. If we repeat V a constant number
of times, rather than twice, we can rule out any constant factor approximation for the independent
set problem.

In general, a verifier that makes k(n) repetitions shows that L ∈ PCP1,1/2k(n) [O(k(n)·log n), O(k(n))],

and the reduction to Independent Set produces graphs that have 2O(k(n)·logn) vertices and for
which 2k(n)-approximate algorithms are infeasible. If we let k(n) = log n, then the graph has size
N = 2O((logn)2) and the infeasible ratio is n, which is 2Ω(

√
logN). So, if we have an algorithm

that on graphs with N vertices runs in polynomial time and has an approximation ratio 2o(
√

logN),
then we have an O(nO(logn)) algorithm to solve 3SAT, and NP ⊆ QP. More generally, by set-
ting k(n) = (log n)O(1), we can show that if there is an ε > 0 such that Independent Set can be
approximated within a factor 2O((logn)1−ε) then NP ⊆ QP.

Finally, using random walks in expander graphs as in [10], it is possible to use the PCP
theorem to show that, for every k(n), NP = PCP1,1/2k(n) [O(k(n) + log n), O(k(n))]. If we choose

k(n) = log n, then, in the reduction, we have a graph of size 2O(k(n)+logn) = nO(1) for which an
approximation ratio of n is infeasible. This shows the following result.

Theorem 23 There is a constant c > 1 such that if there is a polynomial time nc-approximate
algorithm for Independent Set then P = NP.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness
of approximation problems. Journal of the ACM, 45(3):501–555, 1998. Preliminary version in
Proc. of FOCS’92.

11

[2] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. Journal
of the ACM, 45(1):70–122, 1998. Preliminary version in Proc. of FOCS’92.

[3] P. Berman and G. Schnitger. On the complexity of approximating the independent set problem.
Information and Computation, 96:77–94, 1992. Preliminary version in Proc. of STACS’89.

[4] M. Bern and P. Plassmann. The Steiner tree problem with edge lengths 1 and 2. Information
Processing Letters, 32:171–176, 1989.

[5] A. Condon. The complexity of the max-word problem and the power of one-way interactive
proof systems. Computational Complexity, 3:292–305, 1993. Preliminary version in Proc. of
STACS91.

[6] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs and the
hardness of approximating cliques. Journal of the ACM, 43(2):268–292, 1996. Preliminary
version in Proc. of FOCS91.

[7] O. Gabber and Z. Galil. Explicit construction of linear sized superconcentrators. Journal of
Computer and System Sciences, 22:407–425, 1981.

[8] M.R. Garey and D.S. Johnson. The complexity of near-optimal graph coloring. Journal of the
ACM, 23:43–49, 1976.

[9] D.S. Hochbaum and D.B. Shmoys. A best possible heuristic for the k-center problem. Mathe-
matics of Operations Research, 10(2):180–184, 1985.

[10] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proceedings of the 30th
IEEE Symposium on Foundations of Computer Science, pages 248–253, 1989.

[11] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W. Thatcher,
editors, Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

[12] Alexander Lubotzky, R. Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
8:261–277, 1988.

[13] C.H. Papadimitriou and M. Yannakakis. The travelling salesman problem with distances one
and two. Mathematics of Operations Research, 18:1–11, 1993.

[14] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and com-
plexity classes. Journal of Computer and System Sciences, 43:425–440, 1991. Preliminary
version in Proc. of STOC’88.

12

