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Notes on NP-Completeness

This is a summary of what we did in class on the topic of NP-completeness.

1 Circuits

First we introduced the definition of Boolean circuit, as in Sipser Section 9.3, and we noted that
every boolean function with n input bits can be computed by a circuit of size O(n2").
By the way, the following stronger result is true.

Lemma 1 Let f : {0,1}"™ — {0,1} be an arbitrary Boolean function. Then there is a circuit of
size O(2™) that computes f.

PRrROOF: We give a recursive construction of the circuit. If n = 1, then either f(z) = x, in which
case it is computed by a circuit of zero gates, or f(z) = -, which can be computed by a circuit of
size one, or f(x) =0 = (x A—x), which is computed by a circuit of size two, or f(z) =1 = (zV—x),
which is also computed by a circuit of size 2.

Let now f be an arbitrary function of n variables. We can write it as

flze,...;zn) = (2n A f(z1, ..oy 21, 1)) V (mzp A fx1, ..o, 20—1,0))

Where both f(z1,...,2n-1,1) and f(x1,...,2,-1,0) are functions of n — 1 variables, that can be
recursively realized by a circuit.

The size S(n) of the circuit constructed this way satisfies the recursion S(1) < 2, S(n) <
44 2S5(n — 1), which solves to S(n) <3-2"—4. O

Then we proved the following result, which is Sipser Theorem 9.25.

Theorem 2 Let M = (Q,%,T,9,q0,94,qr) be a Turing machine that, on inputs of length n, runs
in time at most t. Then there is a circuit of size O((|T] - |Q|)? - t?) that, given an input = of length
n, outputs 1 if and only if M accepts x.

PROOF: We first construct a circuit Chext that, given a configuration of M that uses < t cells of
tape, computes the configuration at the following step. A final configuration is left unchanged.

Let M have tape alphabet I" and set of states (). We represent a configuration by using ¢ blocks
of bits. The i-th block of bits contains the alphabet element of the i-th cell of the tape (represented
as a sequence of [log |I'|| bits), a bit that says whether the head of the machine is over the i-th cell
of the tape, and, if so, the current state of the machine, represented as a sequence of [log|Q|] bits.
Each block, therefore, is 1 4 [log |I'|] + [log |Q|] bits long. Let us call this number B. (Note that,
for a fixed machine M, B is a constant.)

We want to build a circuit Chext that, given c¢t bits in input representing a configuration,
produces ct bits in output representing the next-step configuration.! It suffices to observe that

!There is one more detail to take care of: what happens if the input is a configuration c that uses ¢ cells of tape
and the next-step configuration ¢’ uses ¢ + 1 cells of tape? In this case, we will let the circuit output only the content
of the first ¢ cells of the tape of ¢.



every bit of the output depends on only < 3B bits of the input, and so each output bit of the
circuit can be computed using O(23P) gates, so that the entire circuit has size O(t - 235). To
justify the previous observation, let ¢ be an input configuration for the circuit and ¢’ be the desired
output. The portion of ¢ corresponding to the i-th cell of the tape depends only on the portion
of ¢ corresponding to the (i — 1)-th, i-th, and (i + 1)-th cells of the tape; in one step, the content
of no other cell can have any effect on the i-th cell. In total, these three cells are described by 3B
bits, including a description of where the head of the machine is and what is the state.

Let us now construct a circuit C; by layering ¢ copies of circuit Chext One on top of the other,
that is, with the outputs of the i-th copy fed as inputs of the (i + 1)-th copy. Clearly, C; has size
O(t? - 23¢) and, given a configuration ¢, Ci(c) computes the configuration reached by M starting
from c in ¢ steps. We can modify it into a circuit C} of size O(t? - 23¢) that has only one output
and such that Cj(c) = 1 if and only if M reaches an accepting configuration starting from ¢ and
running for at most ¢ steps.

Finally, let us hard-wire into C] that the head is in the first cell, that the state is qp, and that
all the cells except the first n contain a blank symbol, and let us call C the resulting circuit. Now,
on input x, C(z) = 1 if and only if M accepts x in at most ¢ steps.? OJ

2 Satisfiability Problems

Definition 3 (Circuit-SAT) Define the Circuit Satisfiability (Circuit-SAT) problem as follows:
given a circuit C' the question is whether there is an input x such that C(z) = 1.

Using Theorem 2 it is easy to prove that Circuit Satisfiability is NP-complete.
Theorem 4 Circuit-SAT is NP-complete.

PRrROOF: This is Theorem 9.26 in Sipser’s book, see the proof there. [J

Next we define the problem 3SAT. In 3SAT, an input is a Boolean formula in 3-Conjunctive-
Normal-Form (3CNF). A 3CNF formula is a AND-of-ORs, with each OR being over precisely three
distinct variables. Variables are allowed to be completed.

Definition 5 (3SAT) The 3SAT problem is: given a SCNF formula ¢, is there an assignment of
values to the variables that satisfies ¢?

It is easy to see that 3SAT is in NP.
Theorem 6 Circuit-SAT <, 3SAT. Therefore 3SAT is NP-hard, and so NP-complete.

This is Theorem 9.27 in Sipser’s book.

2There is one final detail: C; and C] expect in input a configuration, which is a sequence of triples (b, ¢, a) where
b is a bit that tells whether the head is on that cell of the tape, g tells, if b = 1, what is the state of the machine, and
a is the tape alphabet element on that cell of the tape. After we hard-wire the values of b and ¢, we still cannot let
a be the input of the circuit, because each a is a sequence of [log, |['|] bits designed to represent an element of T',
while we want our final circuit to have only one input bit per cell of the tape. We can solve this problem by assuming
that I' is represented in binary so that 0 is mapped into 0---00 and 1 is mapped into 0---01, then we just have to
hardwire zeroes into all the input bits corresponding to an alphabet element except for the last bit in each cell.



3 Graph Problems

Definition 7 In an undirected graph G = (V, E):
e A clique is a subset K CV such that all the pairs u,v € K are connected by an edge in F.

e An independent set is a subset S C V' such that no pair u,v € S is connected by an edge in
E.

o A vertex cover is a subset C' C 'V such that for every edge (u,v) € E at least one of u or v is
an element of C.

Definition 8 (Clique) The Clique problem is: given a graph G and an integer k, is there a clique
of size at least k?

Definition 9 (IS) The Independent Set (IS) problem is: given a graph G and an integer k, is
there an independent set of size at least k¢

Definition 10 (VC) The Vertex Cover (VC) problem is: given a graph G and an integer k, is
there a vertex cover of size at most k?

It is easy to see that Clique, IS and VC are all NP problems.
Theorem 11 3SAT <%, IS. Therefore IS is NP-complete.

PROOF: Let ¢ be a formula with m clauses and n variables, and with precisely three distinct literals
in each clause.

We construct a graph G = (V, E) as follows. The graph has 3m vertices, three for each clause.
The three vertices corresponding to a clause form a triangle and each of them is labeled with one
of the literals in the clause. So, if, for example, the variable x; occurrs three times positively and
twice negated in ¢, then the graph G will have three vertices labeled x; and two vertices labeled Z;.
Then we add an edge between any two vertices that are labeled by complementary literals. This
completes the construction of the graph G.

Claim 12 If ¢ s satisfiable, then G has an independent set of size m.

ProoF: Consider a satisfying assignment for ¢; then in each clause C' of ¢ there is at least a literal
that is made true by the assignment. Let vc be the vertex in G that corresponds to the first literal
in C that is satisfied by the assingment. Consider the set of m vertices S = {ve : C € ¢}, and let
us see that it is an independent set. There are only two types of edges in the graph: edges between
the three vertices corresponding to a clause (let us call them “triangle edges”) and edges between
complementary literals (let us call them “consistency edges”). The vertices in S belong to distinct
triangles, so they do not share any triangle edge; furthermore, their labels are all consistent with
a fixed assignment, and so they cannot share any consistency edge. So .S is an independent set of
size m. U

Claim 13 If G has an independent set of size m, then ¢ is satisfiable.



PRrROOF: Let S be an independent set of size m. For every variable x; in ¢, set x; to TRUE if there
is a vertex labeled x; in S, and set x; to FALSE if there is a vertex labeled Z; in S (note that, since
S is an independent set, S cannot contain both types of vertices). If neither type of vertices is in
S, set z; to FALSE. Let us call this assignment a.

Since S is an independent set, it cannot contain more than one vertex from each triangle, and
since there are only m triangles in the graph it means that .S contains precisely one vertex from
each triangle.

Let now C be any clause in ¢. One of the vertices of the triangle corresponding to C' is in 5,
and so a satisfies one of the literals of C', and so C' is satisfied by a. This is true for every clause
C, so ¢ is satisfied by a. J

The reduction from 3SAT to IS is then the mapping of ¢ into the pair (G, m). O

Theorem 14 IS <, VC. Therefore VC is NP-complete.

PROOF: In a graph G = (V, E), a set S is an independent set if and only if V' — S is a vertex cover.
(This statement follows easily from the definitions.) Here is the reduction from IS to VC: on input

(G,k), output (G,|V|—k). O

Theorem 15 IS <, Clique. Therefore Clique is NP-complete.

PROOF: If G = (V, E) is a graph, define the complement of G to be the graph G = (V, E) with the
same set of vertices and with precisely those edges that are not in G. In a graph G = (V, E), a set
S is an independent set if and only if S is a clique in G. (This statement follows again easily from
the definitions.) Here is the reduction from IS to Clique : on input (G, k), output (G, k). O

4 Problems About Subsets of Integers

Definition 16 (Subset Sum) In Subset Sum the input is a sequence of mon-negative integers
ai,...,an and a target value t. The question is whether there is a subset S C {1,...,n} such that

You may think of the subset sum problem as the problem of giving exact change using coins
of various denominations. There is an algorithm for this problem that uses dynamic programming
and that runs in time polynomial in n and ¢. Since the size of the input is roughly nlogt, this
running time may not be polynomial in the length of the input. We show that the problem is
NP-complete and that a polynomial time algorithm is unlikely to exist. By the way, notice that
the problem is easily seen to be in NP.

Theorem 17 VC <%, Subset Sum. Therefore Subset Sum is NP-complete.

PROOF: Sipser’s book has a different reduction in Theorem 7.37.

In the reduction from VC we start from a graph G = (V, E) with n vertices and m edges and a
parameter k, and we define an instance of Subset Sum witn n + m integers, an integer a, for every
vertex v € V and an integer b, for every edge e € .. We write each integer in base 4, with a digit
for each edge in E. For j =0,...,|E|—1, let e = (u,v) be the j-th edge of E, then the integers ay,,
a, and b, , have a 1 as their j-th digit in base 4, and all other integers have a zero. The integers
ay, in addition, have a 1 as their |E|-th digit, while the integers b, , have a zero.



We set the target to be ¢t = k - 41E + Z'ﬁ‘al 247,

Suppose that there is a vertex cover in GG with at most k vertices. Then, in particular, there is a
vertex cover C with precisely k vertices. (Adding vertices to a vertex cover maintains the property
of being a vertex cover.) Consider the set of integers that consists of all the a, such that v € C
and all the b, , such that precisely one of u or v is in C. If we sum these integers, and we write the
sum in base 4, we will see that all the first |E| digits are 2. Each of the first |F| digits corresponds
to an edge (u,v) in the graph, and only three integers have a 1 in that digit: a,, a, and b, ,; by
our choice, precisely two of these integers are part of our sum, and so we get a 2, with no carry, in
that digit. Finally, we sum k integers of the form a,, and so the total has a leading term k - 412!,

For the other direction, suppose that there are subsets S C V and T' C V such that ) g ay +
Z(UW)GT by, = t. We want to claim that S is a vertex cover of size at most k. First of all, it is clear

that |S| < k, because each a, is bigger than 4! but t < (k4 1) - 4/Fl. It remains to prove that it
is a vertex cover. When we compute the sum of the integers in base 4, we note that we never have
a carry in the first |F| digits, because, in each digit, there are only three integers in our instance
that have a 1 in that digit, and all others have a zero. If no carry occurrs, and if we have a 2 in
each of the first |E| digits, it means that, for each edge (u,v), at least one of a,, or a, participates
in the summation, and so at least one of u or v is in S, and so S is a vertex cover. [

We define three more problems: Partition, Knapsack and Bin Packing.

Definition 18 (Partition) In the Partition problem we are given integers ay, . .., a, and the ques-
tion is whether there is a subset S C {1,...,n} such that 3 ,cga; =3 45 a;.

Definition 19 (Knapsack) In the Knapsack problem we are given integer costs ci,...,c, and
volumes v1, . ..,Un, a cost target t and a volume bound B. The question is whether there is a subset

S CA{l,...,n} such that ) ,.gc; >t and Y, v; < B.

The interpretation of Knapsack is that we have n objects, and object i has volume v; and cost
c;. We have a bag of size B and we want to fit objects of maximum total cost into the bag. In
the decision version, we want to know if it is possible to fit objects of total cost at least ¢ into the
bag. The problem is solvable in time polynomial in n, ¢ and B using dynamic programming. The
size of the problem is about n(logt + log B), and so the dynamic programming algorithm may be
exponential in the input length if the integers are very large compared to n.

Definition 20 (Bin Packing) In the Bin Packing problem we are given volumes vi,...,vy,, a
volume bound B, and a target k. The question is whether we can partion the integers vy, ..., v,
into k subsets such that the integers in each subset sum to at most B.

The interpretation of Bin Packing is that we have n objects, with object i having volume v;.
We are given k bins, each of size B, and we want to fit all the objects into the k bins.
It is easy to see that Partition, Knapsack and Bin Packing are in NP.

Theorem 21 Subset Sum <b, Knapsack. Therefore Knapsack is NP-complete.

PRroOF: Start from an instance aq,...,ay,,t of Subset Sum. Define an instance of Knapsack with
n items by setting ¢; = v; = a;, that is, the cost and the volume of object i are precisely the integer
a;. Then set t = B = k. This is clearly a YES-instance of Knapsack if and only (ai,...,a,,t) is a
YES-instance of Subset Sum. [



Theorem 22 Subset Sum <b, Partition. Therefore Partition is NP-complete.

PROOF: Given an instance I = (ai, ..., an,t) of Subset Sum, define A = >"" | a; to be the total sum
of the integers. Consider the instance of Partition I’ = (ay, ..., an, Gnt1, Gnt2) Where api1 = 2A—t
and ap;2 = A +t. The total sum of the integers in I’ is 44, so I’ is a YES-instance of Partition if
and only if there is a subset of the integers that sums to 2A.

If I is a YES-instance of Subset Sum, let S C {1,...,n} be the solution such that ), g a; = t.
Then S U {an4+1} is a solution that shows that I’ is a YES-instance of Partition.

If I is a YES-instance of Partition, let S C {1,...,n+2} be the solution such that ), ¢ a; = 2A.
Clearly, precisely one of n+ 1 or n+ 2 belongs to S. If (n+ 1) € S, then S — {n + 1} is a solution
that proves that I is a YES-instance of Subset Sum. Otherwise, if n + 2 € S, then Zievan a; =
2A — apyo = A —t, from which we deduce that Eigs,ign a; =t and theset S’ = {i:i<mn,i g S}
proves that I is a YES-instance of Subset Sum. [J

Theorem 23 Partition <%, Bin Packing. Therefore Bin Packing is NP-complete.

PRrOOF: Given an instance ay,...,a, of Partition, create an instance of Bin Packing by setting
V; = Qq, B = (E?:l ai)/2 and k=2. O

5 The Steiner Tree Problem

In the Steiner tree problem we are given a graph G = (V, E), with weights on the edges, and a
subset C' C V of vertices. We want to find the tree of minimum cost that contains all the vertices
of C. This problem is different from the minimum spanning tree problem because the tree is not
required to contain the vertices in V —C, although it may contain some of them if this is convenient.
An interesting special cases (called Metric Steiner Tree) arises when E is the complete graph and
the weights are a metric. That is, if we denote by d(u,v) the weight of the edge (u,v), we have
that for every three distinct vertices u, v, z the triangle inequality

d(u, z) < d(u,v) +d(v, 2)

is true.

The problem is well defined even if the weights do not satisfy the above condition, but the
condition is usually true in instances that arise in practice, so it is interesting to show that the
problem is NP-complete even restricted to “metric” instances. In metric instances we usually call
the vertices “points” and the weight d(u,v) of an edge (u,v) the “distance” between the points u
and v.

We describe a reduction from the Vertex Cover problem to the Steiner Tree problem.

We start from a graph G = (V, E). We define a new graph G’ that has |V| + |E| vertices, that
is, a vertex [v] for each vertex v of G and a vertex [u,v] for each edge (u,v) of G.

The distances in G’ are defined as follows:

e For every edge (u,v) € E, the points [u] and [u,v] are at distance one, and so are the points
[v] and [u,v].

e For every two vertices u,v € V, the points [u], [v] are at distance one.

e For every u € V and (v,2) € E, where u,v, z are distinct, the points [u] and [v, z] are at
distance two



e For every e, ¢’ € E, the points [e] and [¢/] are at distance 2 if e and €' have an endpoint in
common and 3 if they are disjoint

We let C' be the set of points {[u, v] : (u,v) € E}. This completes the description of the instance
of the Steiner Tree problem. Notice that the distances satisfy the triangle inequality, and so the
reduction always produces an instance of Metric Steiner Tree.

Claim 24 If there is a vertex cover in G with k vertices, then there is a Steiner tree in G’ of cost
m+k—1.

PROOF: Let S be the vertex cover. Consider the points {[v] : v € S} and the points {[u, v] : (u,v) €
E}, and consider the weight-one edges between them. We have described a connected sub-graph
of G’, because every point in {[u] : w € S} is connected to every other point in the same set, and
every point [u,v] is connected to a point in {[u] : v € S}. Let us take any spanning tree of this
subgraph. It has m + k — 1 edges of weight one, and so it is of cost m + k — 1, and it is a feasible
solution to the Steiner Tree problem. [

Claim 25 If there is a Steiner tree in G' of cost < m + k — 1, then there is a vertex cover in G
with k vertices.

PROOF: Let T be a feasible Steiner tree. We first modify the tree so that it has no edge of cost 2
or 3. We repeatedly apply the following steps.

e If there is an edge of cost 2 between a point [w] and a point [u,v], we remove the edge from
the tree, and add the two edges ([w], [u]) and ([u], [u,v]) of cost 1.

e If there is an edge of cost 2 between a point [u,v] and a point [v, w], we remove it and add
the two edges ([u,v], [v]) and ([v], [v, w]) of cost 1.

e Finally, if there is an edge of cost 3 between the vertices [u, v] and [w, z]|, we remove the edge,
and add the three edges ([u,v], [v]), ([v], [w]) and ([w], [w, z]), each of cost one.

We repeat the above steps until no edges of cost two or three remain. This process will not
increase the cost, and will return a connected graph. We can obtain a tree by removing edges (and
reducing the cost) if necessary.

The final tree has only edges of weight one, and it has a cost < m + k — 1, so it follows that it
spans < m+ k vertices. The m vertices {[u,v] : (u,v) € E'} must be in the tree, so the tree has < k
vertices [v]. Let S be the set of such vertices. We claim that this is a vertex cover for G. Indeed,
for every edge (u,v) in G, the vertex [u,v] is connected to vg in the tree using only edges of weight
one, which means that either [u] or [v] is in the tree, and that either w or v is in S. O



