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Notes on Algebra

These are notes I wrote several years ago for an undergraduate class on cryptography. They
could be useful to refresh some basic definitions and facts from algebra, which will be useful for the
lectures on zero knowledge protocols.

For example, a book by Childs [C95] covers all the required material without getting too ab-
stract. It also points out the cryptographic applications.

1 Prime Numbers

By integer, we mean a positive or negative integer. We denote by Z the set on integers Z =
{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}. A natural number is a non-negative integer. We denote by N the set
of natural numbers N = {0, 1, 2, 3 . . .}. We also denote by Z+ the set Z+ = {1, 2, 3, . . .} of positive
integers.

For an integer n, we denote by ||n|| the length of n, i.e. the number of bits needed to represent it,
i.e. ||n|| = dlog2 ne. Logarithms will always be to the base 2, so we will omit the base hereafter. We
will denote by lnn the natural logarithm of n, i.e. the logarithm taken to the base e = 2.71828 . . .

For integers k, n, we say that k divides n (or that k is divisor of n) if n is a multiple of k. For
example 5 divides 35. We write k|n when k divides n.

A prime number is a positive integer p ≥ 2 whose only divisors are 1 and p. Notice that 2 is
the only even prime number.

The first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . ..
When a number is not prime, it is called composite. A composite can always be written (in a

unique way) as a product of primes, possibly with repetitions. E.g. 300 = 2× 2× 5× 5.
There are infinitely many prime numbers (which is very easy to prove), and in fact there are

quite a lot of them (which is harder to prove). Specifically, if we define π(n) to be the number of
prime numbers p such that 2 ≤ p ≤ n, then π(n) is about n/ lnn. Formally

Theorem 1 (Prime Numbers Theorem) limn→∞
π(n)
n/ lnn = 1

The following bounds are also known

π(n) ≥ n

lnn

and, for n ≥ 17,

π(n) ≤ 1.10555
n

lnn

There is an efficient randomized algorithm that on input an integer tests whether it is prime or
not. Therefore if we want to generate a large prime (in the interval from 1 to n, where n can be
thought of as a number around 10200) we can just pick a random number in the set {1, . . . , n = 10200}
and then test whether it is prime. If it is not, we try again. Each time we have a probability
≈ 1/ lnn ≈ 1/460 of succeeding, so we expect to succeed after less than 500 attempts. Big prime
numbers are very important in applied cryptography, and the Prime Number Theorem is a very
useful tools to analyze certain cryptographic protocols.
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The Prime Number Theorem has exceedingly difficult proofs, but it is easy to prove at least
that there are infinitely many primes. Suppose, by contradiction, that there are only finitely many
primes, and let them be p1, . . . , pn. Consider the number m = p1 · p2 · · · pn + 1. Since m is bigger
than any prime, it must be composite, and hence it must be divisible by some prime. We note that
m is not divisible by p1, as when we divide m by p1 we get the quotient p2 · · · pn and the remainder
1. Similarly, m is not divisible by p2, neither by p3, . . . , neither by pn. So we get a contradiction.

2 Modular Arithmetic

Let a, n be integers (n ≥ 2). If we try to divide a by n using the grade-school algorithm we
end up with two numbers q and r (the quotient and the remainder) such that aq + r = n and
0 ≤ r ≤ n − 1. For example, if we divide 15 by 7 we get a quotient 2 and a remainder 1 and the
equation 2 · 7 + 1 = 15. Such numbers q and r are unique. For integers a, b, n we write

a = b (mod n)

if a and b have the same remainder when divided by n (equivalently, if a − b is a multiple of n).
For example 15 = 8 (mod 7).

For a fixed integer n, the relation · = · (mod n) has several properties of ordinary equality.
For example,

• For every a ∈ Z, a = a (mod n);

• For every a, b, c ∈ Z, if a = b (mod n) and b = c (mod n), then a = c (mod n);

• For every a, a′, b, b′ ∈ Z, if a = a′ (mod n) and b = b′ (mod n) then a+ b = a′ + b′;

• For every a, a′, k, k′ ∈ Z, if a = a′ (mod n) and k = k′ (mod n), then ak = a′k′ (mod n).

The last two properties imply that when we do arithmetic operations modulo n, then we obtain
the same result if we replace one term by another one that is equal modulo n. In particular, it is the
same if every term a is replaced by the remainder of its division by n. So, when doing operations
modulo n, we can restrict ourselves to use only the integers 0, . . . , n− 1.

We denote by Zn = {0, 1, . . . , n − 1}, and we define on this set operations of addition and
multiplication modulo n. Therefore, for every two elements a, b ∈ Zn we define the element a + b
(mod n), which is defined as the (unique) element c of Zn such that c = a+ b (mod n).

For example, 5 + 4 = 2 (mod 7) and 2 + 1 = 0 (mod 3).
Similarly, we define a product operation in Zn. For example, 3 · 4 = 3 (mod 9).
Addition in Zn is “invertible.” Specifically, for each element a ∈ Zn there is an element a′ ∈ Zn

such that a + a′ = 0 (mod n) (one can take a′ = n − a). This gives an analog in Zn of the
subtraction operation.

Multiplication, alas, is not necessarily invertible. That is, it is not necessarily true that for an
element a ∈ Zn there is an element a′ ∈ Zn such that a · a′ = 1 (mod n).

Consider for example Z6 and the element 2. If there was an element a ∈ Z6 such that 2 · a = 1,
then we would have 3 · 2 · a = 3 · 1 = 3 (mod 6). But we also have 3 · 2 · a = 6 · a = 0 · a = 0
(mod 6), and so we have a contradiction. It is possible to characterize precisely the cases where an
element a has an inverse with respect to multiplication in Zn. To this aim, we need a result that
is also useful for its algorithmic aspect. Recall that the greatest common divisor (abbreviated gcd)
of two numbers n and m is the largest integer that is both a divisor of n and a divisor of m.
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Theorem 2 (Euclid’s algorithm) There exists an algorithm that on input two positive integers
m and n returns k = gcd(m,n) and two integers α, β such that αn+ βm = k. The algorithm runs
in time polynomial in the number of digits of n and m.

Example 3 On input 14 and 10, Euclid’s algorithm returns 2 = gcd(10, 14) and the coefficients
α = 3 and β = −2. Indeed, 3× 10− 2× 14 = 2.

Example 4 On input 60 and 17, Euclid’s algorithm returns 1 = gcd(60, 17) and the coefficients
α = 2 and β = −7. Indeed, 2× 60− 7× 17 = 1.

Let us return to the issue of inverses in Zn. Suppose a and n are such that gcd(a, n) = k > 1, we
will show that a cannot have an inverse. Let us call b = n/k. Note that b ∈ Zn, b 6= 0. Assume by
contradiction that there exists a′ ∈ Zn such that a · a′ = 1 (mod n), then b · (a · a′) = b (mod n),
but also (doing operations over the integers now) b · a · a′ = (n/k) · a · a′ = n · (a/k) · a′ which is a
multiple of n (since a/k is an integer), and therefore we have (b · a) · a′ = 0 (mod n).

Consider now the case gcd(a, n) = 1. Then, using Euclid’s algorithm, we can find coefficients
α, β such that αa+ βn = 1, that is αa = 1 (mod n), that is α is an inverse of a. In this case not
only does a have an inverse, but we can also find it efficiently using Euclid’s algorithm.

We say that two integers n and m are co-prime if gcd(n,m) = 1. Putting everything together
we have

Theorem 5 For an element a ∈ Zn, there exists an element a′ ∈ Zn such that a · a′ = 1 (mod n)
if and only if a and n are co-prime.

3 Groups

Definition 6 (Group) A group is a set G endowed with an operation, that we denote, say, by ⊗,
that given two elements of G returns an element of G (i.e. for every a, b ∈ G, (a ⊗ b) ∈ G; the
operation must satisfy the following properties:

1. For every a, b ∈ G, a⊗ b = b⊗ a;

2. For every a, b, c ∈ G, (a⊗ b)⊗ c = a⊗ (b⊗ c);

3. There exists an element u ∈ G such that for every a ∈ G, a⊗ u = u⊗ a = a;

4. For every element a ∈ G there exists an element a′ ∈ G such that a⊗ a′ = u.

Remark 7 To be precise, what we have just defined is the notion of Abelian group, that is a special
type of groups. In general, G can be a group even if Property 1 is not satisfied (in such a case, it
will be called a non-Abelian group). In this course we will never consider non-Abelian group, so it
is not necessary to insist on the difference. An example of a non-Abelian group is the set of n× n
matrices, together with the matrix multiplication operation.

Our canonical example of a group is Zn with the operation ·+ · (mod n).
Here is another interesting example. For a prime p, define Z∗p = {1, 2, . . . , p− 1}.

Theorem 8 If p is a prime, then Z∗p together with multiplication (mod p) is a group.
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To prove the theorem we have to check the required properties of a group. First of all, it is
definitely true that a · b = b · a (mod p) and that a · (b · c) = (a · b) · c (mod p). Furthermore
we have a special element u, namely 1, such that a · 1 = 1 · a = a (mod p). Using the results of
the previous section, and the fact that a prime number is co-prime with every other number small
than itself, we also have that for every a ∈ Z∗p there is an a′ ∈ Z∗p such that a · a′ = 1 (mod p).
In fact, we should also check one more property, namely that for every a, b ∈ Z∗p it is true that
a · b (mod p) ∈ Z∗p, i.e. that is impossible that a · b = 0 (mod p). This follows by contradiction:
if a · b = 0 (mod p), this means that a · b (taking the product over the integers) is a multiple of
p. Since p is a prime number, it means that either a or b is a multiple of p. But both a and b are
smaller than p, and so we have a contradiction.

It would be nice to have a similar result for arbitrary n, and say that Zn − {0} is a group with
respect to multiplication (mod n). Unfortunately this is not true when n is a composite number
(elements of Zn having some common factor with n do not have an inverse, as seen in the previous
section). Yet, it is still possible to define a group.

Define Z∗n = {a : 1 ≤ a ≤ n − 1 and gcd(a, n) = 1}. For example, Z∗6 = {1, 5} and Z∗10 =
{1, 3, 7, 9}. Note that the definition of Z∗p for p prime is a special case of the previous definition.

Theorem 9 For every positive integer n, Z∗n is a group with respect to multiplication.

We denote by φ(n) the number of elements of Z∗n, i.e. the number of elements of {1, 2, . . . , n−1}
that are co-prime with n. It is easy to compute φ(n) given a factorization of n (but is hard
otherwise).

Theorem 10

1. If p is prime and k ≥ 1 then φ(pk) = (p− 1)pk−1.

2. If n and m are co-prime then φ(nm) = φ(n)φ(m).

3. If the factorization of n is
∏
i q
ki
i then φ(n) =

∏
i(qi − 1)qki−1i .

Note that the third item in the theorem follows from the first two.

Example 11 . In order to compute φ(45) we compute the factorization 45 = 32 · 5 and then
we apply the formula φ(45) = 3 · (3 − 1)2−1 · (5 − 1) = 24. Indeed, we can check that Z∗45 =
{1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 44} has 24 elements.

For every n, the group Zn with respect to the sum has the following nice property: every element
k ∈ Zn can be obtained by summing 1 to itself k times. One can define a generalization of this
property for arbitrary groups.

Definition 12 let G be a group with n elements and operation ⊗. Suppose there exists an element
g ∈ G such that g, g⊗g, g⊗g⊗g,. . . , g ⊗ g ⊗ · · · ⊗ g︸ ︷︷ ︸

n times

are all different (and so cover all the elements

of G). Then G is said to be cyclic and g is said to be a generator of G.

Therefore Zn is always cyclic and 1 is a generator. Quite interestingly, there is a similar result
for Z∗p, p prime.

Theorem 13 For every prime p, Z∗p is a cyclic wit respect to multiplication (mod p).
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We denote by ak (mod n) the value a · a · · · a︸ ︷︷ ︸
k times

(mod n).

Example 14 The group Z∗7 has generators 3 and 5. Indeed, we have

31 = 3 (mod 7) , 32 = 2 (mod 7) , 33 = 6 (mod 7) ,

34 = 4 (mod 7) , 35 = 5 (mod 7) , 36 = 1 (mod 7)

The sequence of powers of 5 is 5, 4, 6, 2, 3, 1.

The following results are useful in the analysis of RSA.

Theorem 15 (Fermat’s Little Theorem) If p is a prime and a ∈ Z∗p, then ap−1 = 1 (mod p).

Fermat’s theorem is a special case of the following result.

Theorem 16 (Euler’s theorem) If n ≥ 2 and a ∈ Z∗n, then aφ(n) = 1 (mod n).

In fact the definition of the function φ() is due to Euler.
Some of our interest in the notions of cyclic groups and generators is related to the exponenti-

ation function (a candidate one-way function). In that application, one has to be able to generate
at random a generator of a group Z∗p (p prime). For this random generation, it is important to be
able to test whether a given element is a generator and to know how many elements are generators.

Given n, a ∈ Z∗n and the factorization of φ(n), there is an efficient algorithm that checks
whether a is a generator for Z∗n. (By “efficient” algorithm we mean an algorithm that runs in time
polynomial in the number of digits of n and a — and in the number of bits needed to represent the
factorization of φ(n), which is polynomial in the number of digits of n anyway.)

Furthermore, the following results guarantee that there are several generators.

Theorem 17 For a prime p, Z∗p has φ(p− 1) generators.

Theorem 18 For every n, φ(n) ≥ n/6 ln lnn.

Using the prime number theorem, it is a triviality to prove (for n ≥ 17) the weaker bound

φ(n) ≥ (n−1)
ln(n−1) − log n. Indeed, there are π(n− 1) ≥ (n−1)

ln(n−1) primes in the interval 2, . . . , n− 1, and
all of them are co-prime with n, except those that are factors of n. But n has at most log n factors.

4 Some more algorithmic tools

4.1 The Chinese Remainders Theorem

The following is a very useful algorithmic result.

Theorem 19 (Chinese Remainders Theorem) Consider a system of congruences of the form

x = a1 (mod n1)
x = a2 (mod n1)

· · ·
x = ak (mod nk)

Where n1, . . . , nk are pairwise co-prime. Then there is always a solution x in the interval
1, . . . , n1 · n2 · · ·nk − 1, and this solution is the only one in the interval. Such a solution x is
efficiently computable given a1, . . . , ak, n1, . . . , nk. Furthermore, the set of all solutions is precisely
the set of integers y such that y = x (mod n1 · n2 · · ·nk).
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For example, consider the system

x = 5 (mod 7)
x = 2 (mod 6)
x = 1 (mod 5)

Then: x = 26 is a solution; 26 it is the only solution in the interval 1, . . . , 209; for every integer
i we have that 26 + 210i is a solution; there is no other solution.

The algorithm to find the solution is simple. Let us call N = n1 · n2 · · ·nk and Ni = N/ni.
Let us also call yi = (Ni)

−1 (mod ni), that is, yi is such that yi · Ni = 1 (mod ni). By our
assumptions on n1, . . . , nk it must be that gcd(Ni, ni) = 1, so yi is well defined. Then a solution to
the system is

k∑
i=1

aiNiyi (mod n1 · n2 · · ·nk)

4.2 Quadratic Residues

A (positive) integer x is said to be a perfect square if there is some integer y ∈ Z such that x = y2;
if so, y is said to be a square root of x. For example 25 is a perfect square, whose square roots are
5 and −5, while 20 is not a perfect square.

If an integer x is a perfect square then it has precisely two square roots, and they are efficiently
computable given x. Unfortunately, things are not so easy with modular arithmetic.

Definition 20 An element x ∈ Zn is said to be a quadratic residue (mod n) if there exists an
element y ∈ Zn such that x = y · y (mod n). If so, y is said to be a square root of x (mod n).

Let us first consider the case of Zp with p prime. Then things are not too different from the
case of the integers.

Theorem 21 Let p be a prime number. If x ∈ Zp (x 6= 0) is a quadratic residue, then it has
exactly two square roots.

Theorem 22 There exists an efficient randomized algorithm that on input p prime and x ∈ Zp
tests whether x is a quadratic residue and, if so, returns the two square roots of x.

Among the integers, perfect squares are quite rare, and they get sparser and sparser: there are
only about

√
n perfect squares in the interval 1, . . . , n. The situation is quite different in the case

of Zp.

Theorem 23 Let p ≥ 3 be a prime. Then Zp has (p− 1)/2 non-zero quadratic residues.

This is easy to see: each one of the p − 1 element y 6= 0 is the square root of y · y, on the
other hand every quadratic residue has two square roots, and so there must be (p− 1)/2 quadratic
residues.

When we are in Zn the situation gets more involved, and it is conjectures that no efficient
algorithm, on input x and n, can determine whether x is a quadratic residue, let alone find a root.
The same conjecture holds when n is the product of two large primes.

On the other hand, if n = pq is the product of two primes, and the factorization of n is
known, then extracting square roots becomes feasible. The next two results are proved using the
Chinese Remainders Theorem. The algorithm of Theorem 25 uses the algorithm of Theorem 22 as
a subroutine.
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Theorem 24 Let n be the product of two primes. If x is a quadratic residue (mod n), then x
has precisely 4 square roots in Zn.

Theorem 25 There is an efficient randomized algorithm that on input (x, p, q) (where p and q are
prime and x ∈ Zpq) tests whether x is a quadratic residue (mod pq); if so, the algorithm finds all
the four square roots of x.
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