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Lecture 18

In which we show how to use semidefinite programs to certify non-existence of sparse vectors
in a random subspace.

1 Planted Sparse Vector, Tensor Decomposition and Poly-
nomial Optimization

In the past few lectures, we discussed algorithms for finding planted sparse vectors in random
subspaces, and tensor decomposition. Though the two problems seem to be completely
unrelated, powerful algorithms exist for both problems based on similar ideas. Let’s first
review the two problems:

Planted Sparse Vector in Random Subspace. Given a description of the subspace
span(v0,v1, · · · ,vd) ⊆ Rn, v0 is k-sparse and v1, · · · ,vd ∼ i.i.d.N (0, In), find v0.

Tensor Decomposition. Given tensor T =
∑n

i=1 ai ⊗ ai ⊗ ai ∈ Rd×d×d, {ai}ni=1 linearly
independent (or randomly drawn) find a1, · · · ,an.

In previous lectures, we use LP relaxation for the first problem, and guarantees recovery of
cn√
d logn

-sparse vector for d < n
2 . The tensor decomposition problem can be solved with only

linear independence assumptions for n ≤ d, by reduction to matrix decomposition.

On the other hand, better bounds can be achieved under stronger assumptions for both

problems. Specifically, if we assume d = O
( √

n√
logn

)
, cn-sparse planted vectors can be re-

covered by a polynomial-time algorithm for some small constant c. For tensor decomposition

with ai ∼ i.i.d.N (0, Id), polynomial-time algorithm exists in the regime of n ≤ d3/2

polylog(n) .
An interesting fact is that methods that achieve these bounds are based on similar ideas,
for which the following polynomial optimization problem provides a unified view:

max{p(x)} s.t.‖x‖2 = 1, (1)

where p(·) is a polynomial.
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Sparsity of a vector can be relaxed using ratio between its ‖ · ‖p norms, which leads to
polynomial optimization. For tensor decomposition, the problem of finding top singular
vector of a 3-tensor is naturally a degree-3 polynomial problem:

max

∑
j,h,k

Tj,h,kxjxhxk

 s.t.‖x‖2 = 1, (2)

In general, the problem is hard for polynomials with degree greater than 2. But efficient
algorithms or certifiable upper bounds exists for the random cases. In this lecture, we will
illustrate the technique by certifying non-existence of cn-sparse vector in random subspace
- which is usually the first step for finding planted solution.

Theorem 1 There exists absolute constant c, c′ > 0, such that there is a polynomial-time
algorithm that certifies span(v1,v2, · · · ,vd) contains no cn-sparse vector with 1−o(1) prob-

ability, if d ≤ c′
√
n√

logn
and v1, · · · ,vd ∼ i.i.d.N (0, In).

In the following we will prove this theorem.

2 SDP Relaxation

We consider continuous relaxation for the discrete problem minx∈S ‖x‖0.

Let ‖x‖p = (
∑n

i=1 |xi|p)
1/p for p ≥ 1. Note that for k-sparse vector x, by Cauchy-Schwartz

inequality, we have:

‖x‖42 =

 ∑
i:xi 6=0

|xi|2
2

≤

 ∑
i:xi 6=0

12

 ∑
i:xi 6=0

x4i

 = k‖x‖44. (3)

So we have:

min
x∈S
‖x‖0 ≥ min

x∈S

‖x‖42
‖x‖44

=

(
max

x∈S,‖x‖2=1
‖x‖44

)−1
. (4)

Let matrix A = [v1,v2, · · · ,vd] ∈ Rn×d, we have Aij ∼ i.i.d.N (0, 1). The above optimiza-
tion problem is equivalent to

max ‖Ax‖44 s.t.‖Ax‖2 = 1. (5)

Therefore, we have:

max
‖Ax‖2=1

‖Ax‖44 ≤ O(1/n) ⇐⇒
(

max
x∈S,‖x‖2=1

‖x‖44
)−1

≥ Ω(n) =⇒ min
x∈S
‖x‖0 ≥ Ω(n) (6)

The above arguments lead to the first lemma:

Lemma 2 For subspace S ⊆ Rn, to certify non-existence of cn-sparse vector in S, it suffices
to certify that max‖Ax‖2=1 ‖Ax‖44 ≤ O(1/n).
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We first deal with the constraint ‖Ax‖2 = 1 ⇐⇒ xTATAx = 1. Note that for d < n/2,
ATA is sample covariance of Gaussian random vectors, which will be concentrated around
identity in a multiplicative factor. So, asking for ‖Ax‖2 = 1 is roughly asking for ‖x‖2 = 1.
We use the following fact from random matrix theory:

Lemma 3 For A ∼ N (0, 1)n×d, we have the following with high probability:

n

2
Id � ATA � 2nId. (7)

Conditioned on n
2 Id � A

TA, the constraint ‖Ax‖2 = 1 implies ‖x‖2 ≤ 2
n . So we have:

max
‖Ax‖2=1

‖Ax‖44 ≤ max
‖x‖2≤ 2

n

‖Ax‖44 (8)

Thus we can make ATA � n
2 I the first part of our certificate (which can be certified in

polynomial time), and the revised goal is to certify with high probability that:

max
‖x‖2≤ 2

n

‖Ax‖44 = O

(
1

n

)
. (9)

3 Certifying the Upper Bound

By now, we have reduce the problem of certifying non-existence of sparse vector to certifica-
tion of upper bound for 9, which is a random instance of 4-th order polynomial optimization
problem 1. The connection to tensor decomposition also lies here.

Rewrite the random matrix as:

A = [v1,v2, · · · ,vd] = [a(1),a(2), · · · ,a(n)]T (10)

The optimization objective in 9 can be written as:

‖Ax‖44 =
n∑

i=1

∑
j,k,h,l

aj(i)ak(i)ah(i)al(i)xjxkxhxl. (11)

Instead of dealing with the 4-th order polynomial, it is more convenient to use quadratic
forms. For x ∈ Rn, define x ⊗ x ∈ Rd2 as a vector indexed by (j, k) ∈ {1, 2, · · · , d}2, with
(x⊗ x)jk = xjxk. We can write the problem as:

‖Ax‖44 = (x⊗ x)TM(x⊗ x), (12)

where M ∈ Rd2×d2 is a matrix indexed by (j, k), (h, l), defined as:

(M)(j,k)(h,l) =

n∑
i=1

aj(i)ak(i)ah(i)al(i) (13)
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By definition, the vector x⊗ x satisfies:

‖x⊗ x‖2 =

 d∑
j=1

d∑
k=1

x2jx
2
k

1/2

= ‖x‖22 ≤
2

n
. (14)

A first attempt is to show that ‖M‖2 ≤ O(n) with high probability, and use ‖M‖2 as a
certificate. However, as we will see in following arguments, this is not true.

Fortunately, this does not mean the above relaxation is hopeless, since we restrict the vector
to be the form of x⊗ x, which is the flattening of a rank-1 matrix. The good news is that
the eigenvectors corresponding to large eigenvalues of M are flattened high-rank matrices,
which are far from x⊗ x.

To understand eigen-pairs of random matrix M , we first consider its expectation:

E(M)(j,k),(h,l) = nE gjghgkgl, (15)

where g1, g2, · · · , gd ∼ i.i.d.N (0, 1).

There are only two cases that make E(M)(j,k),(h,l) non-zero: j = k = h = l, or they are two
pairs of values but are different.

B(j,k),(h,l) = E gjghgkgl =


E g4 = 3 j = k = h = l

(E g2)2 = 1 (j, k, h, l)are two pairs

0 otherwise

(16)

For example, let y = (1{j=k})1≤j,k≤d be flattened identity matrix, we have:

E(yTMy) = n(3d+ d(d− 1)) = (d+ 2)n‖y‖2. (17)

That is why bounding the spectral norm ‖M‖2 does not work. And we have to exploit the
structure of x⊗ x:

(x⊗ x)TB(x⊗ x) = 3

d∑
j=1

x4j + 6
∑
j,h

x2jx
2
h = 3‖x‖44 + 6‖x‖42 ≤ 9‖x‖42 = O

(
1

n2

)
. (18)

So we have: E(x⊗ x)TM(x⊗ x) = O
(
1
n

)
.

If ‖M−EM‖2 = O(n), we can easily construct high-probability certificate. However, this is
not true either. On the few directions with large eigenvalues, it is possible for M to deviate
a lot from the expectation, in terms of spectral norm.

This problem can be circumvented by using multiplicative approximation ratio, instead of
the norms of additive error, since the overall guarantee only requires multiplicative factor.
It is possible that on some direction y, we have yT (M − E(M))y is large, but on these
directions yT E(M)y is also large. And we only care about directions in the form of x⊗ x,
which guarantees yT E(M)y to be small. Actually, we can prove the following lemma:

Lemma 4 With high probability, M � 2E(M).
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If this lemma is true, it will guarantee that

(x⊗ x)TM(x⊗ x) ≤ 2(x⊗ x)T E(M)(x⊗ x) = O

(
1

n

)
, w.h.p (19)

According to previous arguments, this is what we need to certify upper bounds for polyno-
mial optimization problem 9. We can verify this within polynomial time, and combine it
with the first part, making a valid certificate for non-existence of sparse vector in S that
holds with high probability. The entire certificate is:{

M � 2E(M)

ATA � n
2 I

(20)

The certificate 20 can be computed in polynomial time, and certifies non-existence of cn-
sparse vector for some c > 0. To prove Theorem 1, it remains to prove Lemma 4.

Note that:

M =

n∑
i=1

Mi =

n∑
i=1

(ai ⊗ ai)(ai ⊗ ai)
T . (21)

M is the sum of i.i.d. random matrices, which is convenient to apply matrix concentration
inequalities. However, standard matrix concentration techniques such as matrix Chernoff
bounds, matrix Bernstein bounds, etc., deal only with additive error in terms of spectral
norm, which is not possible in this setting. The solution to that problem is by whitening,
i.e., to normalize each matrix Mi so that the expectation becomes identity. If each M̂i

has expectation Id×d, the additive error makes no differences with multiplicative error.
Furthermore, the multiplicative error bounds for M̂i can be translated back to guarantees
for Mi, and the lemma can be proved with standard matrix concentration inequalities with
normalization trick.

Concretely, we normalize Mi as:

M̂i = B−
1
2MiB

− 1
2 = B−

1
2 (ai ⊗ ai)(ai ⊗ ai)

TB−
1
2 ∈ Rd2×d2 . (22)

Here we define the square root of a positive semidefinite matrix as follows: for PSD matrix B
with eigen-decomposition B = PDP T , with orthogonal matrix P and diagonal matrix D =

diag (λ1, λ2, · · · ) with λi ≥ 0, we define B
1
2 = P · diag

(
λ

1
2
1 , λ

1
2
2 , · · ·

)
· P T . Consequently, if

B is positive definite, each λi > 0, we have B−
1
2 =

(
B

1
2

)−1
= P ·diag

(
λ
− 1

2
1 , λ

− 1
2

2 , · · ·
)
·P T .

Apparently, since Mi = (ai ⊗ ai)(ai ⊗ ai)
T is always positive semidefinite, B = EMi is also

a PSD matrix. To illustrate the proof idea, let us temporally ignore the invertibility issue,
and proceed the analysis. By definition, we have:

E M̂i = B−
1
2 E(Mi)B

− 1
2 = B−

1
2 ·B ·B−

1
2 = Id2 (23)

Let M̂ =
∑n

i=1 M̂i. If we can prove that ‖M̂ − E M̂‖2 ≤ n with high probability, this will

imply M̂ � E M̂ + nId2 . Then we will have the following with high probability:

2E(M)−M = B
1
2

(
2E(M̂)− M̂

)
B

1
2 � B

1
2

(
2E(M̂)− E(M̂)− nId2

)
B

1
2 = 0 (24)
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This will prove Lemma 4 and therefore Theorem 1.

However, the first step of above arguments is not technically correct: actually, the matrix
B is never invertible, due to the symmetry among paired quadruples (j, k, h, l). Concretely,
the matrix B ∈ Rd2×d2 can be written as:

B =


2Id + Jd 0

d× d(d−1)
2

0
d× d(d−1)

2

0 d(d−1)
2
×d I d(d−1)

2

I d(d−1)
2

0 d(d−1)
2
×d I d(d−1)

2

I d(d−1)
2

 , (25)

where the first d rows and columns correspond to (j, k) with j = k; the rows and columns

at location d+ 1 · · · d+ d(d−1)
2 correspond to the case of j < k; and the last d(d−1)

2 locations

are for j > k. Apparently, the d2 × d2 matrix B has rank d(d+1)
2 .

There are two approaches towards solving this problem: we could either reduce the matrix
by exploiting symmetry in our construction of X, or to use pseudo-inverse.

For the first perspective, we can modify the formulation of this SDP, so thatM ∈ R
d(d+1)

2
× d(d+1)

2 ,
indexed by (j, k), (h, l) with j ≤ k and h ≤ l. The vector will also be indexed with (j, k) with
j ≤ k, by taking corresponding entries of x⊗x. In this setup we will have B � I d(d+2)

2

� 0.

And the normalization trick goes through.

Another perspective is by taking pseudo-inverse of B. Recall that the pseudo-inverse B† of
a matrix B = P ·diag (λ1, λ2, · · · )·P T is defined as B† = P ·diag (ν1, ν2, · · · )·P T , where each

eigenvalue is νi =

{
λ−1i λi 6= 0

0 λi = 0
. This is equivalent to inverting the matrix B restricted to

subspace which is orthogonal to B’s nullspace, and the normalization argument can be also
carried out in this subspace.

Thus, we can resolve the issue in either ways, and to prove Theorem 1, it remains to show
that ‖M̂ −E M̂‖2 ≤ n with high probability. In the next lecture, we will use standard tools

of matrix concentration inequalities to prove this fact in the regime of d = O
( √

n√
logn

)
.

6


	Planted Sparse Vector, Tensor Decomposition and Polynomial Optimization
	SDP Relaxation
	Certifying the Upper Bound

