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Lecture 16

In which we show how to use linear programs to find planted sparse vectors in a random
subspace.

1 Review: Sparse Reconstruction Problem

Recall the planted sparse vector problem introduced in the last lecture. In the problem,
we are given a subspace S = span(v0,v1, . . .vd) ⊂ Rn where v0 is a vector with at most
k non-zero entries, and v1 . . .vd are random vectors (i.e. their elements are independently
drawn from N(0, 1)). Our goal is to find a k-sparse vector, i.e. one with at most k non-zero
entries - ideally, we would like to find v0.

1.1 Certifying a lack of sparse vectors

In the last lecture, we showed that given the space S = span(v1, . . .vd) which does not
include the planted sparse vector v0, we can certify with high probability that no O( n√

d
)-

sparse vector exists. Some of the techniques used will be useful finding sparse vectors, so
we review the proof here.

We can use the following formulation for finding the sparse vector (recall that ‖v‖0 is the
number of non-zero elements of v):

min ‖z‖0
s.t. z ∈ S

z 6= 0

(1)

Let z∗ be an optimal solution to (1), with ‖z‖0 = k. Then ‖z‖1 ≤ k‖z‖∞. Thus the
optimum solution of (1) is lower bounded by the optimal solution to:

min
‖z‖1
‖z‖∞

s.t. z ∈ S

z 6= 0

(2)
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Since z∗ is feasible in (2) and achieves objective k. Similarly, let z∗ be an optimal solution

to (2) for which ‖z‖1
‖z‖∞ = k. Let imax be the index of the element of z∗ with the largest

absolute value. Then y = 1
z(imax)

z∗ satisfies y ∈ S, ‖y‖∞ = 1, and ‖y‖1 = k. Then, the

optimal solution of (2) is lower bounded by:

min
i

OPTi (3)

Where:

OPTi =


min ‖z‖1
s.t. z ∈ S

z(i) = 1

z 6= 0


Since y gives a solution achieving objective k to the program defined by OPTimax . Note
that for each i, the program defined by OPTi can be written as a linear program. Therefore,
we can efficiently solve for the value of (3) and thus obtain a lower bound certificate for the
sparse vector problem in a random subspace.

Let A be the matrix defined as follows:

A =

 | | |
v1 v2 . . . vd

| | |


i.e, A is the matrix whose columns are the basis vectors of S. Then S = {Ax : x ∈ Rd}.
Then for a fixed i:

OPTi =


min ‖Ax‖1
s.t. x ∈ Rd

(Ax)(i) = 1

x 6= 0


We can use the following theorem (which we state without proof) to lower bound OPTi

with high probability:

Theorem 1 If A ∈ Rn×d where d ≤ n
2 and the elements of A are sampled from N(0, 1)

independently, then with high probability:

∀x ∈ Rd, ‖Ax‖1 ≥ Ω(
√
n)‖Ax‖2

Then with high probability OPTi can be lower bounded by:

min Ω(
√
n)‖Ax‖2

s.t. x ∈ Rd

(Ax)(i) = 1

x 6= 0

(4)
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We can use the following theorem (whose proof we also omit) to lower bound (4):

Theorem 2 If A ∈ Rn×d and the elements of A are sampled from N(0, 1) independently,
then with high probability:

ATA � n

2
I

Then by Theorem 2, with high probability:

‖Ax‖22 = xTATAx ≥ n

2
xT Ix =

n

2
‖x‖22 (5)

Taking the square root of the first and last term in (5) gives ‖Ax‖2 ≥ Ω(
√
n)‖bx‖2, and

thus we can lower bound (4) by:

min Ω(n)‖x‖2
s.t. x ∈ Rd

(Ax)(i) = 1

x 6= 0

(6)

Note that (Ax)(i) = 〈x, (Ai,1, Ai,2 . . . Ai,d)〉. By applying the Cauchy-Schwarz inequality,
we get that (Ax)(i) ≤ ‖x‖2 · ‖(Ai,1, Ai,2 . . . Ai,d)‖2. This lets us lower bound 6 by:

min Ω(n)‖x‖2
s.t. x ∈ Rd

‖x‖2 · ‖(Ai,1, Ai,2 . . . Ai,d)‖2 ≥ 1

x 6= 0

(7)

Then, with high probability ‖(Ai,1, Ai,2 . . . Ai,d)‖2 ≤ O(
√
d). Thus for any feasible x in (7),

‖x‖2 ≥ Ω( 1√
d
), which means (7) is at least Ω( n√

d
) with high probability. By applying union

bound, we get that for all i, this holds with high probability. The minimum value of (7)
across all i is a lower bound to the sparsity of the sparsest vector in S, so we conclude that
with high probability each vector in S has sparsity at least Ω( n√

d
).

2 Finding Planted Sparse Vectors

Thus far, we have only shown that we can certify a lower bound for the sparsest vector in a
random subspace. Now, we want to argue that we can easily find a planted vector v0 with
at most ‖v0‖0 = k ≤ c n√

d logn
non-zero elements (for some constant c).
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In particular, we will argue that with high probability the following is minimized by a
multiple of v0:

min
i


min ‖z‖1
s.t. z ∈ S

z(i) = 1

z 6= 0

 (8)

Since (8) and its minimizer can be computed by solving n linear programs, we can find v0

in polynomial time.

Without loss of generality, assume that:

• v0(1) is the largest element of v0

• v0(1) = 1

• v0(1),v0(2), . . .v0(k) are the non-zero elements of v0.

Then, define A as follows:

A =

 | | |
v0 v1 . . . vd

| | |


It suffices to prove that

min ‖Ax‖1
s.t. x ∈ Rd+1

(Ax)(1) = 1

x 6= 0

(9)

Is uniquely minimized by x = (1, 0, 0, . . . 0).

2.1 Proof strategy

Before starting the proof, we go over the high level strategy we want to use. Note that v0

looks like:



1
[−1, 1]
[−1, 1]

...
0
0
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That is, the first element is 1, the next k− 1 elements are in [−1, 1], and then all remaining
elements are 0.

Suppose we start with the solution x = (1, 0, 0, . . . 0) to (9) (say that x is indexed from 0
to d, so that Ax =

∑
i x(i)vi). Then, the last n− k elements of Ax are all zero. Consider

modifying this solution. If we make any of x(1), . . .x(d) non-zero, then the last n − k
elements of Ax can only increase in absolute value, and thus their contribution to ‖Ax‖1
will increase. Then, it only makes sense to make any of x(1), . . .x(d) non-zero if doing so
decreases the contribution of the first k elements of Ax to ‖Ax‖1 by a larger amount than
the contribution of the last n − k elements is increased by. However, since v1,v2 . . . are
chosen randomly, and n− k � k, it should be unlikely that this is possible.

2.2 Proof of unique optimum

Now to formalize the proof. Split A into submatrices as follows:

A =

[
v′0 M1

0 M2

]
Where v′0 is the vector consisting of the non-zero elements of v0, 0 is the all-zeroes vector,
M1 is the matrix whose columns are the first k elements of v1,v2 . . .vd, and M2 is the
matrix whose columns are the last n − k elements of v1,v2 . . .vd. Consider a solution x,
written as:

x =

[
x0
x′

]
Where x′ consists of the last d elements of x. Then:

‖Ax‖1 =

∥∥∥∥x0v0 +

[
M1

M2

]
x′
∥∥∥∥
1

=

∥∥∥∥x0v0 +

[
M1

0

]
x′ +

[
0
M2

]
x′
∥∥∥∥
1

(10)

Where 0 is the all-zeroes matrix. Note that the non-zero elements of the first and second
term in 10 and the non-zero elements of the third term are in disjoint positions. Then 10
is equal to: ∥∥∥∥x0v0 +

[
M1

0

]
x′
∥∥∥∥
1

+

∥∥∥∥[ 0
M2

]
x′
∥∥∥∥
1

(11)

By triangle inequality, we get that 11 is lower bounded by:

‖x0v0‖1 −
∥∥∥∥[M1

0

]
x′
∥∥∥∥
1

+

∥∥∥∥[ 0
M2

]
x′
∥∥∥∥
1

(12)
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Since x0 is a scalar and the 0 portion of the second and third term in 12 contribute nothing
to the norm, we can rewrite 12 as:

x0 ‖v0‖1 −
∥∥M1x

′∥∥
1

+
∥∥M2x

′∥∥
1

(13)

We now use two lemmas to lower bound (13).

Lemma 3 If M is a k× d matrix whose elements are sampled from N(0, 1) independently,
with high probability:

∀x ∈ Rd : ‖Mx‖1 ≤ 2k‖x‖1

Proof: Let ‖M‖1→1 = maxx 6=0
‖Mx‖1
‖x‖1 . We are trying to show that ‖M‖1→1 ≤ 2k. Without

proof, we claim that:

‖M‖1→1 = max
i
‖(M1,i,M2,i . . .Mk,i)‖1

Fix some i. Then:

‖(M1,i,M2,i . . .Mk,i)‖1 =
k∑

j=1

|Mj,i| =
k∑

j=1

sign(Mj,i)Mj,i

We want to show this is at most 2k with high probability. We show a stronger statement
- consider fixing k bits b1, . . . bk where bj ∈ {−1, 1}. Then

∑k
j=1 bjMj,i is a sum of k

N(0, 1) random variables, and is thus a N(0, k) random variable. We know by properties
of Gaussians that:

Pr[N(0, k) ≥ t] ≤ e−t
2/2k

In particular, if t = 2k then we get:

Pr[N(0, k) ≥ 2k] ≤ e−2k

Thus for any fixed choice of bits b1, . . . bk,
∑k

j=1 bjMj,i is at least 2k with probability at

most e−2k. Taking the union over all choices of bits, we get that for all choices of bits,∑k
j=1 bjMj,i ≤ 2k and thus ‖(M1,i,M2,i . . .Mk,i)‖1 ≤ 2k with probability at most 2ke−2k

(since ‖(M1,i,M2,i . . .Mk,i)‖1 is equal to
∑k

j=1 bjMj,i for bj = sign(Mj,i)). Taking the union

over all choices of i, we get that ‖M‖1→1 ≥ 2k with probability at most d2ke−2k, which
vanishes quickly with k. �
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Lemma 4 If M is a n× d matrix whose elements are sampled from N(0, 1) independently
and d ≤ n

16 , with high probability:

∀x ∈ Rd,x 6= 0 : ‖Mx‖1 ≥ Ω(
n√
d

)‖x‖1

Proof: By applying Theorem 1 and Theorem 2:

‖Mx‖1 ≥ Ω(
√
n)‖Mx‖2 ≥ Ω(n)‖x‖2 ≥ Ω(

n√
d

)‖x‖1

�

Using Lemmas 3 and 4 and the fact that (13) lowerbounds ‖Ax‖1, we get that:

‖Ax‖1 ≥ |x0|‖v0‖1 − 2k‖x′‖1 + Ω(
n− k√

d
)‖x′‖1

If x is the optimal solution, then ‖v0‖1 ≥ ‖Ax‖1 since v0 is a feasible solution. Assuming
k ≤ c n√

d
√
logn

for some sufficiently small c we get:

‖v0‖1 ≥ |x0| · ‖v0‖1 + 4k
√

log n · ‖x′‖1 (14)

Let us call a = (M1,1, . . . ,M1,d) the k-dimensional vector corresponding to the first entries
of v1, . . . ,vd. We have the constraint

x0 + 〈x′,a〉 = 1

By properties of Gaussians, with high probability:

‖a‖∞ ≤ 2
√

log n

Combining these two statements with (14) we get:

‖v0‖1 ≥ |1− 〈x′,a〉| · ‖v0‖1 + 2k · ‖a‖∞ · ‖x′‖1
≥ (1− 〈x′,a〉) · ‖v0‖1 + 2k · ‖a‖∞ · ‖x′‖1

≥ (1− ‖a‖∞ · ‖x′‖1) · ‖v0‖1 + 2k · ‖a‖∞ · ‖x′‖1

Where the last step is because 〈x′,a〉 =
∑

j x
′(j)a(j) ≤

∑
j x
′(j) maxk a(k). Rearranging

terms gives:

‖v0‖1 · ‖a‖∞ · ‖x′‖1 ≥ 2k · ‖a‖∞ · ‖x′‖1 ≥ 2‖v0‖1 · ‖a‖∞ · ‖x′‖1
‖x′‖1 ≥ 2‖x′‖1

which implies x′ = 0.
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