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Lecture 14

In which we finish the proof of exact reconstruction in the stochastic block model, and in-
troduce a new semirandom model with an adversarial component.

1 Overview

We first continue the proof of exact reconstruction in the stochastic block model (SBM),
by proving that the optimum to the minimum bisection SDP we have studied so far is
also the unique optimum. We then introduce semirandom models, where both ran-
dom and adversarial choices are allowed. We will demonstrate some analogous results to
the non-adversarial SBM: how to achieve ε-approximate recovery and exact recovery after
introducing a special set of adversarial choices.

2 Exact Reconstruction, Continued

Recall our setup for the stochastic block model: We construct a random graph G = (V,E),
with |V | = n. We partition V into S1 and S2, with |S1| = |S2| = n

2 . We place edges
between vertices of the same Si with probability p, and edges between our partition sets
with probability q < p.

We write a = np
2 and b = nq

2 . Last lecture, we started proving the following theorem:

Theorem 1 Given G = (V,E) drawn from our SBM distribution, if a − b > c ·
√

log n ·√
a+ b, then we can exactly reconstruct our bisection V = (S1, S2) with high probability.

Recap: We began our proof in Lecture 12 by writing our SDP for minimum bisection.

max
∑
u,v

Au,v〈xu,xv〉

subject to ‖xv‖2 = 1 for all v ∈ V

‖
∑
v

xv‖2 = 0
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We define our intended solution {xv}v∈V below, and the matrix X by Xuv = 〈xu,xv〉:

xv =
1√
n

[1, 1, . . . , 1] if v ∈ V1 and xv =
1√
n

[−1,−1, . . . ,−1] if v ∈ V2

so Xu,v = 1 if u, v are on the same side

Xu,v = −1 if u, v are on different sides

Recall that X = χχT , where χ is an indicator vector for the cut:

χ ∈ Rn : χv = 1 if v ∈ S1, χv = −1 if v ∈ S2

Let av be the number of neighbors of v on the same side of the bisection, and let bv be the
number of neighbors of v on the opposite. Then:

Cost({xv}v∈V ) =
∑
v

(av − bv)

We proved that {xv}v∈V was an optimal solution to our SDP by showing that it was feasible,
applying SDP duality and obtaining a dual solution of the same cost. Below is the dual:

min

n∑
v=1

yv

subject to diag(y1, . . . , yn) + y0 · J � A

We saw that with high probability, the solution y0 = a+b
2 and yv = (av − bv) is feasible for

the dual. Then, Cost(y) = Cost({yv}nv=0) =
∑n

v=1 yv =
∑

v(av − bv) as well.

Claim 2 The solution {xv}v∈v is the unique optimum for the minimum bisection SDP.

Proof: Fix graph G. We previously showed that y0, . . . , yn defined above is feasible for
the dual, with high probability. This implies:∑

v

(av − bv) = Cost({xv}v∈V ) = A ·X

≤ [diag(a1 − b1, . . . , an − bn) +
a+ b

n
· J ] ·X

≤ diag(a1 − b1, . . . , an − bn) ·X +
a+ b

n
[J ·X]

=
∑
v

yv ·Xv,v +
a+ b

n
·
∑
u,v

〈xu,xv〉

=
∑
v

yv +
a+ b

n
‖
∑
v

xv‖2

= Cost(y) + 0 =
∑
v

(av − bv)
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Thus, all of the above inequalities are actually equalities, and we have:

A ·X = [diag(a1 − b1, . . . , an − bn) +
a+ b

n
· J ] ·X

which implies [diag(a1 − b1, . . . , an − bn) +
a+ b

n
· J −A] ·X = 0

Let M = [diag(a1 − b1, . . . , an − bn) + a+b
n · J −A]. To show uniqueness of our solution X,

it suffices to show that the X is the only solution that satisfies M ·X = 0.

Recall in Lecture 12, that we showed Mχ = ~0. We also showed for all x ⊥ χ:

xTMx ≥ (a− b)−O(
√

log n
√
a+ b) > 0

We can also write SDPs as positive combinations of certain rank 1 matrices ziz
T
i , so:

X =
∑
i

λiziz
T
i where λi > 0

M ·X = M · (
∑
i

λiziz
T
i )M =

∑
i

λi(z
T
i Mzi)

The quantity zTi Mzi will always be positive, unless zi = χ. Therefore, if M ·X = 0, we must
have X = χχT , which proves uniqueness of our solution. We conclude that this solution is
also optimal for the minimum bisection problem. �

3 Semirandom Models for Cut Problems

While there are many different semirandom models that are analogous to various random
graph and planted solution models, we focus this lecture on the semirandom stochastic
block model. Here, we have a random selection of a graph, but we also have an adversary
that is permitted to perform certain moves on the graph. Construct our graph as follows:

1. Start with the SBM, with edge probabilities p, q and bisection V = (S1, S2).

2. The adversary is now allowed to do any of the following steps as much as it wants:

• Add non-crossing edges, effectively “increasing p.”

• Remove crossing edges, effectively “decreasing q.”

It may appear that the adversary only helps us recover the bisection, as the quantity a− b
is larger now. Intuitively, the adversary is making the clusters from the bisection more
apparent. However, it is not obvious that the SDP techniques we developed in the previous
lectures still apply here. The adversary can change the graph so that ‖A− d

nJ‖ no longer
tells us about the hidden cut.

We see now that our SDP techniques can still apply to the semirandom stochastic block
model, with some relatively simple changes to our proofs.
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3.1 Exact reconstruction

The aim of this section is to prove the following analogue in the semirandom model:

Theorem 3 Given G = (V,E) from the semirandom SBM, if a − b ≥ c ·
√

log n ·
√
a+ b,

then we are able to exactly reconstruct our bisection V = (S1, S2) with high probability.

The proof requires the following lemma:

Lemma 4 If M is symmetric, and for all i, we have Mi,i ≥
∑

j 6=i |Mi,j |, then M � 0.
(We call M “symmetric and diagonally-dominated,” or SDD.)

Proof:[Proof of Lemma 4] Fix an x. Then:

xTMx =
∑
i,j

Mijxixj =
∑
i

Miix
2
i +

∑
i 6=j

Mijxixj

≥
∑
i

Miix
2
i −

∑
i 6=j

|Mij ||xi| · |xj |

≥
∑
i

Miix
2
i −

∑
i 6=j

|Mij | · (
x2
i + x2

j

2
)

=≥
∑
i

Miix
2
i −

∑
i

(
x2
i

2
·
∑
j 6=i

|Mij |)−
∑
j

(
x2
j

2
·
∑
i 6=j

|Mij |)

=
∑
i

x2
i · (Mii −

∑
j 6=i

|Mij |) ≥ 0

We obtain the third line by applying Cauchy-Schwarz, and the final line by using the fact
that M is symmetric. �

Proof:[Proof of Theorem 3] We use the same SDP for minimum bisection:

max
∑
u,v

Au,v〈xu,xv〉

subject to ‖xv‖2 = 1 for all v ∈ V

‖
∑
v

xv‖2 = 0

However, our adjacency matrix A now behaves differently. We can think of A = AR +AN ,
where AR is the adjacency matrix for the fully random contribution to G’s construction,
and AN is the adjacency matrix for the adversary’s contribution.

Note that AR is the adjacency matrix for an instance of the non-adversarial SBM, while
AN has entries in {−1, 0, 1}. 0 corresponds to an edge untouched, 1 to an edge added, and
−1 to an edge removes.

4



Despite these changes from our usual AR, we can still show that the indicator for the hidden
bisection (S1, S2) is the unique optimal solution to our SDP. Since our constraints did not
change, it is certainly feasible. To analyze the cost, define:

av = the number of randomly chosen neighbors on the same side

bv = the number of randomly chosen neighbors on the opposite side

âv = the number of non-random neighbors on the same side

b̂v = the number of deleted neighbors on the opposite side

Using the same indicator solution {xv}v∈V (more specifically, xv = 1√
n

[1, 1, . . . , 1] if v ∈ V1
and xv = 1√

n
[−1,−1, . . . ,−1] if v ∈ V2), we then have:

Cost({xv}v∈V ) =
∑
v

(av − bv) +
∑
v

(âv + b̂v)

As before, we want to show that there is still a feasible dual solution with the same cost,
to prove optimality of the hidden cut in the primal, For reference, here is the dual:

min
n∑

v=1

yv

subject to diag(y1, . . . , yn) + y0 · J � A

A natural candidate for a solution here is y0 = a+b
n , and yv = (av − bv) + (âv + b̂v).

Cost(y) =
∑
v

(av − bv) + (âv + b̂v) = Cost({xv}v∈V )

This solution has the desired cost. We are now left to see if:

diag((a1 − b1) + (âv + b̂v), . . . , (an − bn) + (âv + b̂v)) +
a+ b

n
· J � AR +AN

We already know that diag(a1 − b1, . . . , an − bn) + a+b
n · J � AR, so it suffices to prove:

diag(âv + b̂v, . . . , âv + b̂v)−AN � 0

We can now apply Lemma 4 to diag(âv + b̂v, . . . , âv + b̂v)−AN , and conclude that it is PSD.
We have now established that our current y = {yv}v∈V is feasible.

As before, to prove uniqueness, we define the matrix M as follows:

M = diag((a1 − b1) + (âv + b̂v), . . . , (an − bn) +
a+ b

n
· J − (AR +AN )

= [diag(a1 − b1, . . . , an − bn) +
a+ b

n
· J −AR] + [diag(â1 + b̂1, . . . , ân + b̂n)−AN ]

Let M1 be the first “random” part that is the same as the matrix non-adversarial case, and
M2 be the “adversarial” part we introduced in this proof. Again, we show that our X with
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Xu,v = 〈xu,xv〉 is the unique solution to M · X = 0. And again, let χ be the indicator
vector for our cut. Consider any x ⊥ χ:

xTMx = xT (M1 +M2)x = xTM1x + xTM2x ≥ xTM1x > 0

Here, we see that xTM2x ≥ 0 since we proved that M2 is PSD earlier. We also know that
xTM1x > 0, with strict inequality, from the uniqueness proof in the non-adversarial setting.
This tells us that X is the unique optimum as well. �

We now ask: where did we use the assumption that the adversary only removed crossing
edges, and only added non-crossing edges? That assumption guarantees we add âv and b̂v.

3.2 ε-approximate reconstruction

We can also get an analogue of ε-approxmate reconstruction in the semirandom model:

Theorem 5 Given G = (V,E) drawn from the semirandom SBM and ε > 0, if a − b ≥
cε ·
√
a+ b, then we can exactly reconstruct our bisection V = (S1, S2) with fewer than εn

misclassified vertices.

Proof: We will use the same SDP for minimum bisection, and the same solution {xv}v∈V
as in the previous two sections. Then, applying a fact from ε-approximate recovery in the
non-adversarial SBM:

Cost({xv}v∈V ) =
∑
v

(av − bv) +
∑
v

(âv + b̂v) ≥w.h.p. [n(a− b)−O(n)] +
∑
v

(âv + b̂v)

For the non-adversarial case (with adjacency matrix AR as defined in the previous section),
we used Grothendieck’s inequality and Chernoff bounds to show that w.h.p., for all {xv}
and {yv} such that ‖xv‖2 = ‖yv‖2 = 1:∑

u,v

[(AR)uv − (E(AR))uv] · 〈xu,yv〉 ≤ O(n
√
a+ b)

We compile the following equations, where AN is also defined as in the previous section:

(AR − E(AR)) ·X ≤ O(n
√
a+ b) (1)

AN ·X ≤
∑
u,v

(AN )uv =
∑
v

(âv + b̂v) (using Fröbenius norm) (2)

(AR +AN ) ·X ≥ [n(a− b)−O(n)] +
∑
v

(âv + b̂v) (3)

If we compute (1) - (2) - (3), we then have:

E(AR) ·X ≥ n(a− b)−O(n)−O(n
√
a+ b)
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Recall from Lecture 10 (non-adversarial setting) that we could write E(AR) = a+b
n ·J+a−b

n ·C.

a− b
n
· C ·X ≥ n(a− b)−O(n

√
a+ b)

C ·X ≥ n2(a− b)−O(n2
√
a+ b)

≥ n2(1−O(

√
a+ b

a− b
))

We use the above to bound the Fröbenius norm of C −X, to see how “close” C is to X:

‖C −X‖2F = C · C +X ·X − 2C ·X

= 2n2 − 2n2(1−O(

√
a+ b

a− b
)) ≤ 2

c
n2

We run the same argument at the very end of Lecture 10 to conclude that the unit eigen-
vector corresponding to the maximum eigenvalue of X is a good approximation to 1√

n
χ,

where χ is the indicator vector for the cut. �

3.3 Other semirandom models

We can also consider the usual stochastic block model with planted sets S1 and S2, but
with a different kind of adversary. The adversary is allowed to both add and remove edges
within the Si, but is only allowed to delete edges between S1 and S2. While we can’t hope
to recover the original position, we do have the following result:

Theorem 6 If q ≥ c ·
√
logn
n , we can find a balanced cut with O( qn

2

4 ) edges.
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