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Lecture 12

In which we (begin to) prove that the SDP relaxation exactly recovers communities in the
stochastic blockmodel.

Our strategy in this lecture will be to argue that, under suitable conditions on the average
internal- and external-degrees a and b in the SBM, the combinatorial solution achieves the
optimum. In the next lecture, we will see that by an SDP analogue of complementary
slackness, we can actually guarantee that the combinatorial solution is the unique solution.
We begin with a review of duality theory before diving into the main argument.

1 LP and SDP duality

Duality provides a method to upper bound the optimal value of maximization problems
(and lower bound the optimal value of minimization problems). In the linear case, suppose
we start with a maximization LP:

max cTx s.t. Ax = b, x ≥ 0, (1)

where c ∈ Rn, b ∈ Rm and A ∈ Rm×n is a matrix of constraint coefficients.

If we wanted to certify that any feasible point for this LP satisfied a certain upper bound
on cTx, one natural strategy is to attempt to represent c as a linear combination of the
rows aj of A. Indeed, if we managed to write c =

∑m
j=1 yjaj , we would necessarily get that

any feasible point had value exactly equal to

m∑
j=1

yja
T
j x = yTAx = bT y.

Due to the non-negativity constraint on x, however, we do not need to require that c be a
linear combination of the rows of A. Instead, it suffices to look for coefficients yj such that
c ≤

∑m
j=1 yjaj = AT y. Any such y yields an upper bound on the optimum of bT y. The

problem of finding the optimal lower bound by this method is also an LP, given by:

min bT y s.t. AT y ≥ c. (2)

In the language of duality theory, (1) is the primal program and (2) is the dual.
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The informal argument we sketched above can be formalized as the following chain of
inequalities to prove that the value of the dual (2) is an upper bound on the value of the
primal (1). Indeed, if x ∈ Rn is primal feasible and y ∈ Rm is dual feasible, then

cTx ≤
(
AT y

)T

x, (3)

= yTAx (4)

= yT b (5)

= bT y, (6)

and the claim follows.

A similar construction can be defined for SDPs. To see how this works, let · denote the
matrix inner product on Rn×n. That is, M ·M ′ : =

∑
i,j MijM

′
ij . An SDP can then be

expressed as

maxC ·X, s.t. A(j) ·X = bj , 1 ≤ j ≤ m,
X � 0

where the matrices A(j) ∈ Rn×n and the notation M � M ′ is understood as meaning that
M −M ′ is a PSD matrix.

We can attempt to port over the idea of the LP dual to this new setting as follows:

min bT y s.t.

m∑
j=1

yjA
(j) � C. (7)

We now prove that in fact this construction yields weak duality in the sense that the
optimum of (7) is an upper bound on the optimum of (3).

For this, again suppose X ∈ Rn×n is primal feasible and y ∈ Rm is dual feasible (that is,
feasible for (7)). We then observe that

bT y =

m∑
j=1

yjbj (8)

=
m∑
j=1

yj

(
A(j) ·X

)

=

[ m∑
j=1

yjA
(j)

]
·X.

Now the only question is, how do we relate

[∑m
j=1 yjA

(j)

]
·X to C·X given that

[∑m
j=1 yjA

(j)

]
�

C? The following lemma answers this question for us.
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Lemma 1 Suppose A, B ∈ Rn×n are PSD. Then A ·B ≥ 0.

Proof: Recall that we may write A =
∑n

k=1 λkvkv
T
k , where each λk ≥ 0 and the vk form

an orthonormal basis for Rn. By linearity of the matrix inner product, we then have

A ·B =

n∑
k=1

λk ·
(
vkv

T
k ·B

)
.

But now we notice that

vkv
T
k ·B =

n∑
i=1

n∑
j=1

vk,ivk,j ·Bij

= vTk Bvk ≥ 0.

Since each λk ≥ 0, we conclude that A ·B ≥ 0, as required. �

Applying the conclusion of Lemma 1 to the result of the chain of inequalities (8), we find

bT y ≥
[ m∑

j=1

yjA
(j)

]
·X ≥ C ·X.

Taking a minimum over the LHS and a maximum over the RHS yields the comparison of
optima that we sought.

Duality is a powerful tool worth becoming more familiar with. To this end, a nice exercise
is the following.

Exercise 1 Use SDP duality to prove that the value of the GW relaxation of MaxCut is
≤
∣∣E∣∣ for any graph.

2 Duality for the SBM

To see how duality can help us with the SBM, let’s first rewrite the SDP relaxation of the
minimum balanced cut problem in a way that looks more like the SDP we analyzed above.
Our starting point is the original formulation

min
∑

{i, j}∈E

1− 〈xi, xj〉
2

s.t.
∣∣∣∣xi∣∣∣∣22 = 1, 1 ≤ i ≤ n, (9)

∣∣∣∣∣∣∣∣ n∑
i=1

xi

∣∣∣∣∣∣∣∣2
2

= 0.

We aim to rewrite this problem in terms of a matrix variable X ∈ Rn×n. Intuitively, the
correspondence between that variable and the given variables will be Xij = 〈xi, xj〉.
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Now, notice that the objective can be rewritten as

∑
{i, j}∈E

1− 〈xi, xj〉
2

=

∣∣E∣∣
2
− 1

2

∑
i,j

Aij〈xi, xj〉

=

∣∣E∣∣
2
− A ·X

2
,

Thus, up to a translation and scaling that does not change the location of the optimal
solution, we may replace minimization of the given objective by maximization of A ·X, as
required for an SDP. We then note that∣∣∣∣xi∣∣∣∣22 = 〈xi, xi〉 = Xii,

so the norm constraints can be replaced by constraints of the form

Eii ·X = 1,

where Eii is the matrix with a one in cell
(
i, i
)

and zeros everywhere else. Finally, we
notice that ∣∣∣∣∣∣∣∣ n∑

i=1

xi

∣∣∣∣∣∣∣∣2
2

=
n∑

i=1

n∑
j=1

〈xi, xj〉

= J ·X,

where J is the all-ones matrix.

We have thus found our way to the following formulation of the SDP relaxation:

maxA ·X s.t. Eii ·X = 1, 1 ≤ i ≤ n (10)

J ·X = 0,

X � 0.

We note that in the notation of (3), we can let the constraint index run from 0 to n and set
A(0) = J and A(j) = Ejj for 1 ≤ j ≤ n. The constraint vector is then b =

(
0 1n

)
∈ Rn+1.

Putting it all together, we find that the dual can be written as:

We are now in a position to write down the dual. For convenience in what follows, we shall
view the dual variable as

(
y0 y

)
∈ Rn+1, so the notation will be slightly different from the

dual formulation (7). In the modified notation, we have

min
n∑

i=1

yi s.t. diag
(
y
)

+ y0J � A, (11)

where for any vector v ∈ Rn, diag
(
v
)

denotes the corresponding diagonal matrix whose
entry at

(
i, i
)

is vi.
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3 Exact Reconstruction in the SBM—Part I

Our aim is to prove the following theorem. As usual, a = pn
2 is the average internal degree

and b = qn
2 is the average external degree.

Theorem 2 There exists a universal constant c > 0 such that whenever a−b > c
√

log n
√
a+ b,

the solution of the SDP relaxation (10) is given by χχT . In particular, solving the SDP re-
laxation yields exact recovery in the SBM in this regime.

3.1 A candidate dual certificate

The main idea behind our proof is that we already know a primal feasible solution to the
SDP relaxation (10). Indeed, we can just set

Xij =

{
1 if i and j are in the same community,

−1 otherwise.
(12)

Clearly Xii = 1 for all 1 ≤ i ≤ n and J · X = 0 because the communities have the same
size. Meanwhile, X = χχT , where χ is the indicator of the cut, so it is also PSD. Thus, it is
a feasible point for the primal SDP (10) and corresponds to the optimum of the unrelaxed
combinatorial problem.

Our aim is to show that actually the feasible solution (12) is the unique optimal solution.
The first step toward this goal is to show that it is in fact optimal, and we shall do this
by exhibiting a dual solution whose dual objective value is equal to the primal value of the
combinatorial solution.

Notice that the value of the combinatorial solution in the primal is given by

A ·X =
n∑

i=1

[ ∑
j in same community as i

Aij −
∑

j in other community

Aij

]

=
n∑

i=1

(
ai − bi

)
,

where ai is the within-community (or internal-) degree of i and bi is the cross-community
(or external-) degree of i.

A candidate for a dual solution with the same objective value is thus given by taking

yi = ai − bi, 1 ≤ i ≤ n, and y0 =
a+ b

n
, (13)

where the latter only matters for feasibility and not the objective value. We stress that this
vector is actually a random variable, since the ai and bi are random quantities.

It is clear by inspection that (13) specifies dual variables that achieve the value of the
combinatorial solution (12). The only question is whether this specification of the variables
yields a dual feasible point. The main thrust of the proof is thus to show that, with high
probability, the proposed dual solution is indeed feasible—and therefore optimal, since it
achieves a primal feasible value of the objective function.
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3.2 Proving that the certificate is dual feasible

Feasiblity of the proposed dual certificate is equivalent to the positive definiteness condition

M : = diag
(
y
)

+ y0J −A � 0.

We shall actually prove a stronger statement that will be useful for the complementary
slackness part of the proof. We intend to show that (a) Mχ = 0 with probability 1, where
again χ is the indicator of the cut and that (b) xTMx > 0 for all nonzero x ⊥ χ with high
probability.

The first statement (a) we shall directly verify below. The second (b) will follow from a
matrix concentration argument: we shall show that apart from one eigenvalue of 0 corre-
sponding to χ, the eigenvalues of E

[
M
]

are all a − b and we will then argue that with
high probability

∣∣∣∣M − E
[
M
]∣∣∣∣

op
≤ O

(√
log n

√
a+ b

)
, which will yield the theorem when

a− b > c
√

log n
√
a+ b for a suitable absolute constant c > 0.

To verify that Mχ = 0 with probability 1, we compute

Mχ = diag
(
y
)
· χ−Aχ+ Jχ

= diag
(
y
)
· χ−Aχ,

where we have used balance to deduce Jχ = 0. We now observe that(
diag

(
y
)
· χ
)
i

=
(
ai − bi

)
χi,

while (
Aχ
)
i

=

n∑
j=1

Aijχj

= χi

n∑
j=1

Aijχiχj

=
(
ai − bi

)
χi,

where we have used the fact that χiχj = 1 if i and j are in the same community and −1
otherwise. Thus, diag

(
y
)
χ = Aχ and the claim follows.

On the other hand, we observe E
[
yi
]

= E
[
ai − bi

]
= a− b for 1 ≤ i ≤ n. Thus,

E
[
M
]

=
(
a− b

)
· I +

a+ b

n
· J − E

[
A
]

=
(
a− b

)
· I +

a+ b

n
· J − a+ b

n
· J − a− b

n
· χχT

=
(
a− b

)
· I − a− b

n
· χχT .

It is now clear that χ is in the nullspace of E
[
M
]

(as it must be since it is in the nullspace
of M with probability 1) and that all the other eigenvalues of E

[
M
]

are a− b, as claimed.

In the next lecture, we shall use these facts together with a matrix version of Bernstein’s
inequality to conclude the proof of Theorem 2.
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