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Lecture 10

In which we go over a more powerful (but difficult to compute) alternative to the spectral
norm, and discuss how to approximate it.

Today we’ll discuss a solution to the issue of high-degree vertices distorting spectral norms,
which will prepare us for next lecture’s discussion on community detection in the stochastic
block model using SDP. We’ll discuss a new kind of norm, the infinity-to-one norm, and
find an efficient way to approximate it using SDP.

1 Fun with Norms

In the past few lectures, we’ve been heavily relying on the spectral norm,

‖M‖ = max
‖x‖=1

|xTMx| = max
‖x‖=1,‖y‖=1

xTMy

which is efficiently computable and turns out to be pretty handy in a lot of cases.

Unfortunately, high-degree vertices have a disproportionately large influence on the spectral
norm’s value, limiting its usefulness in graphs where such outliers exist. Often (as we did
in lecture 9), people will try to modify the input so that there are no vertices of overly high
degree or add some regularizing term to ameliorate this issue. Unfortunately, this can lead
to less useful results - in lecture 9, for instance, we derived a bound that required that all
high-degree vertices be excised from the input graph first.

In this lecture, we’ll attack this problem in a different way by introducing a different norm,
the infinity-to-one norm, defined as follows:

‖M‖∞→1 := max
x,y∈{−1,1}n

xTMy .

It can be shown that
‖M‖∞→1 ≤ n‖M‖ .

So spectral norm always gives us a bound for the infinity-to-one norm. However, the infinity-
to-one norm can come in even more handy than the spectral norm (if we can actually
calculate it):
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Theorem 1 Let P be a symmetric matrix with entries in [0, 1]. Pick a random graph G
such that {i, j} is in G w.p. Pij. Then whp:

‖A− P‖∞→1 ≤ O

√n
∑
ij

Pij

 = O(n
√
d).

For context, recall that we proved a similar bound in Lecture 9 for the spectral norm, but
we required that all nodes with degree greater than twice the average degree be removed
first. The zero-to-one norm allows us to bypass that restriction entirely.

Proof: Fix x,y ∈ {+1,−1}n. Examine the expression

P
[
xT (A− P )y ≥ t

]
= P

∑
ij

xyyj(Aij − Pij) ≥ t


We want to make sure that this probability exponentially decreases w.r.t. n.

Recall that Bernstein’s inequality states that given N independent random variables, abso-

lutely bounded by M , with expectation 0, we have P [
∑

iXi > t] ≤ exp
(
− t2/2∑

i EX2
i +3Mt

)
.

Aij − Pij is either −Pij or 1 − Pij and therefore is bounded by [−1,+1]. Since x,y ∈
{+1,−1}n, we can have the M from Bernstein’s inequality take on value 1. Combining this
with the fact that

E(xiyi(Aij − Pij))
2 ≤ Pij ,

Bernstein’s inequality gives us

P

∑
ij

xyyj(Aij − Pij) ≥ t

 ≤ exp(− t2/2∑
i pij + 3t

) ≤ 2−3n

provided that t >
√
n
∑

i,j pij , as desired. � So this norm allows us to easily sidestep the

issue of high-degree vertices. The problem is that it’s NP-hard to compute.

2 Grothendieck’s Inequality

However, it turns out that we can approximate the infinity-to-one norm to within a constant
factor using SDP:

Theorem 2 (Grothendieck’s Inequality) There exists some c (turns out to be around 1.7,
but we won’t worry about its exact value here) such that for all M ,

max
x1, ...,xn

y1, ...,yn

‖xi‖ = 1
‖yy‖ = 1

∑
i,j

Mij

〈
xi,yj

〉
≤ c max

x,y∈{−1,1}n

∑
i,j

Mijxiyj = ‖M‖∞→1
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So instead of dealing the combinatorially huge problem of optimizing over all ±1 vectors, we
can just solve an SDP instead to get a good approximation. For convenience, let’s denote
the quantity on the left of the above expression as ‖M‖SDP .

Let’s start with a warmup lemma. The proof techniques in this lemma - specifically, the
trick of replacing a vector from a continuous distribution with a random vector from some
discrete distribution, and then taking the expectation to relate the two quantities, will come
in handy later on.

Lemma 3 maxx,y∈{−1,1}n x
TMy = maxx,y∈[−1,1]n x

TMy. In other words, maximizing
over the discrete space of ±1 random vectors and maximizing over the continuous space of
vectors in that range gives the same result.

Proof: It is obvious that the expression on the left is at least the right (since it’s just
a relaxation). In order to show that the right is at least the left: given some continuous
vectors xi,yi, we can find discrete −1,1 vectors bi, ci such that their expectations are equal
to xi,yi. We can do that by having bi take on value +1 w.p. 1/2 + xi/2 and −1 w.p.
1/2− xi/2, likewise for ci.

That means that:

E
∑
i,j

Mi,jbicj =
∑
i,j

Mi,j(Ebi)(Ecj)

=
∑
i,j

Mijxiyj

which gives us the desired result. �

Fact 4 ‖M‖SDP is a norm.

Proof: Multiplicative scaling: obvious.

Nonnegativity (except iff M = 0): It is obvious that the SDP norm is zero if M is zero.

Now suppose M is nonzero.

Notice that we can replace the constraints in the SDP norm requiring that ‖xi‖ = 1,
‖yi‖ = 1 with ‖xi‖ ≤ 1, ‖yi‖ ≤ 1. Why? We’ll use the same trick as we did in the proof of
Lemma 3:

Obviously maximizing over ‖xi‖ ≤ 1, ‖yi‖ ≤ 1 will give us at least as good a result as
maximizing over ‖xi‖ = 1, ‖yi‖ = 1, since it’s a relaxation, so it suffices to show that if we
can obtain some value for

∑
i,j Mij

〈
xi,yj

〉
using ‖xi‖ ≤ 1, ‖yi‖ ≤ 1, we can do at least as

well using ‖xi‖ = 1, ‖yi‖ = 1.

Let’s suppose we have some vectors xi,yi with length at most 1. Now let’s replace them
with random vectors ri, si of length exactly 1 whose expectation are xi,yi respectively (just
scale the xi,yi up, and have ri, si be either the scaled value or its negative with probability
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calibrated appropriately so their expectations work out to be xi,yi). Then we can just say:

E
∑
i,j

Mij 〈ri, sj〉 =
∑
i,j

Mij 〈Eri,Esj〉

=
∑
i,j

Mij

〈
xi,yj

〉
.

So ri, sj must take on some values (of length exactly 1) that make
∑

i,j Mij 〈ri, sj〉 ≥∑
i,j Mij

〈
xi,yj

〉
, as desired.

Since we assumed M is nonzero, let a, b be such that Ma,b 6= 0. If we set xa = ±yb to
be some arbitrary vector of unit length - using a plus if Ma,b is positive and a minus if it’s
negative - and all other xi,yj to zero (which we can do without affecting the value of the
max by the fact we just proved), we can immediately see that∑

i,j

Mij

〈
xi,yj

〉
= Mab〈xa,yb〉 > 0,

giving a positive lower bound for the maximizer, as desired.

Triangle inequality: Just look at the x and y that maximize
∑

i,j Mij 〈xi,yi〉 for M = A
and M = B, and observe that

max
x1, ...,xn

y1, ...,yn

‖xi‖ = 1
‖yy‖ = 1

∑
i,j

(A+B)ij
〈
xi,yj

〉
≤ max

x1, ...,xn

y1, ...,yn

‖xi‖ = 1
‖yy‖ = 1

∑
i,j

Aij

〈
xi,yj

〉
+ max

x1, ...,xn

y1, ...,yn

‖xi‖ = 1
‖yy‖ = 1

∑
i,j

Bij

〈
xi,yj

〉

since we can always match the quantity on the left hand side by choosing the same xi and
yj for both terms on the right-hand-side. �

2.1 Proof of Grothendieck’s inequality

Now let’s prove Grothendieck’s inequality:

Proof: Observe that, by Lemma 3, maximizing over the choice of x,y ∈ {−1, 1}n in the
zero-to-one norm is equivalent to maximizing over the choice of x,y ∈ [−1, 1]n, so we can
rewrite our proof goal as

max
x1, ...,xn

y1, ...,yn

‖xi‖ = 1
‖yy‖ = 1

∑
i,j

Mij

〈
xi,yj

〉
≤ c max

x,y∈[−1,1]n

∑
i,j

Mijxiyj

4



Let x1, ...,xn,y1, ...,yn be of length 1 and be the optimal choices used in ‖M‖SDP , i.e. the
maximizers of

∑
i,j Mij 〈xi,yi〉. It suffices to prove that there exist vectors b, c ∈ [−B,B]n

(for some fixed constant B, since we can just scale the result by changing c) to plug into
the right-hand side of the above expression such that c

∑
i,j Mijbicj ≥

∑
i,j Mij

〈
xi,yj

〉
.

Pick g = (g1, ..., gm), with each coordinate being drawn from the normal distribution with
mean 0 and variance 1, and let bi = 〈g,xi〉 and ci = 〈g,yj〉. Then

Ebicj = Egx
T
i gg

Tyj

= xT
i (Eggg

T )yj

But Eggg
T is just the identity, since the diagonal elements are just the expectation of the

square of the Gaussian (which is 1, its variance) and the off-diagonals are the expectation
of the product of two independent Gaussians, which is zero (since the expectation of each
individual Gaussian is zero).

So
Ebicj = xT

i yj = 〈xi,yj〉 .

At this point we’ve got something that looks a lot like what we want: if the expectation of
bicj is equal to 〈xi,yj〉, then maximizing over them is definitely going to give us a quantity
greater than or equal to 〈xi,yj〉. Unfortunately, there’s an issue here: since Gaussian
random variables are unbounded, bi and ci are unbounded; on the other hand, what we’re
trying to do is maximize over vectors whose elements are bounded by [B,B].

Our approach will be to “clip” the bi and ci to a finite range, and then bound the error
introduced by the clipping process. Formally, fix a constant B and pick a Gaussian random
vector g. Now define a ’clipped’ inner product:

bi :=


−B if 〈xi, g〉 < −B
〈xi, g〉 if −B ≤ 〈xi, g〉 ≤ B

B if 〈xi, g〉 > B

and likewise for cj . For convenience, let’s define the truncation error as follows, to represent
how far the clipped value differs from the actual value.

t(z) :=


z + B if z < −B
0 if −B ≤ z ≤ B

z −B if z > B

So we can rewrite b as:
bi := 〈xi, g〉 − t(〈xi, g〉)

and similarly we can define:
cj := 〈yj , g〉 − t(〈yj , g〉) .
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So now we have

E
∑
ij

Mijbicj =
∑
ij

MijE
[
(〈xi, g〉 − t(〈xi, g〉))

(
〈yj , g〉 − t(〈yj , g〉)

)]
=

∑
ij

MijE
[
〈g,xi〉〈g,yj〉

]
−
∑
ij

MijE
[
〈g,xi〉t(〈g,yj〉)

]
−
∑
ij

MijE
[
t(〈g,xi〉)〈g,yj〉

]
+
∑
ij

MijE [t(〈g, xi〉)t(〈g, yj〉)]

Clearly
∑

ij MijE〈g,xi〉〈g,yj〉 is just the SDP norm , since〈g,xi〉 and 〈g,yi〉 were the
’original’ bi and ci.

What we will show now is that the remaining three terms are bounded by constant factors
of SDP norm, so the entire sum of all four terms getting a constant factor approximation
of it. The analysis is the same for all three terms so, for brevity, we’ll just look at the last
one: ∑

ij

MijEt(〈g, xi〉)t(〈g, yj〉) .

For convenience, let’s define fi,hj : Rm → R as:

fi(g) := t(〈xi, g〉)

hj(g) = t(〈yj , g〉) .

Now, it’s convenient to think of the fi and hi as vectors of infinite dimension indexed by
input g (we’ll bring the dimensionality down to a finite value at the end of the proof). Let’s
define the following inner product and norm in this space:

〈f1, f2〉 = Egf1(g)f2(g)

‖f‖2 = Egf
2(g)

Now, since the Gaussian distribution is rotation-independent (we can just rotate a Gaussian
random variable around without changing its distribution), the squared norms of the fi and
the hj are all the same (since all the xi, yi have length 1, and dotting with them can be
thought of a rotation). That means that the above norm takes on the same value for all f ,
h, so all we need to do is figure out a constant bound on it.

Fortunately, this value is pretty easy to bound. Notice that the function t is zero if the dot
product’s absolute value is smaller than B. If we have w ∼ N(0, 1),

|t(w)|2 ≤ |w|21{w≥B,w≤−B} ≤ e−Ω(B2) ≤ 1/(10B)
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for sufficiently large B, which is a constant.

So if the squared norms are bounded above by 1/(10B), which means we can substitute
this and the norm bound into the above expression to get:

Now, armed with this, we can conclude (with similar results for the other two error terms)∑
ij

MijEt(〈g,xi〉)t(〈g,yj〉) =
∑
ij

Mij〈fi, hj〉 ≤ ‖M‖SDP (1/100B2) .

which tells us that E
∑

ij Mijbicj , is within a constant bound of the SDP norm
∑

ij MijE〈g,xi〉〈g,yj〉
as desired.

There’s only one slightly fishy bit in the proof we used above, though, and that’s the
treatment of functions of infinite-dimensional vectors indexed by a Gaussian vector. Let’s
conclude by constructing a (finite-dimensional) solution to the SDP from the functions:

Claim: If Xij = 〈fi, fj〉, then Xij � 0.

Proof:

aTXa =
∑
iji

ai〈fi, fj〉aj

=
∑
ij

〈aifi, ajfj〉

= 〈
∑
i

aifi,
∑
j

ajfj〉

= ‖
∑
i

aifi‖2

≥ 0

as desired. �

So the matrix Xij comprises a nice finite-dimensional solution to the SDP, and we’re done
with the proof.

Also, noticing that we have four terms in the expansion of E
∑

ij Mijbicj , each one of which
is a feasible value for the SDP, we can figure out how much we deviate from the actual
optimum, i.e. ‖M‖SDP . Since each term can’t exceed the value of the SDP optimum at
all, E

∑
ij Mijbicj is separated from

∑
ij MijE

[
〈g,xi〉〈g,yj〉

]
by a factor of four, giving us

a bound on the constant c in the inequality. �

To recap, notice that there were two key “tricks” here:

1) Assuming that we were rounding an optimal solution to our SDP (i.e. starting with
xi,yj as optimizers). We don’t get any bounds otherwise!

2) Treating the rounding error itself as a feasible solution of the SDP.

This proof was communicated to us by James Lee.
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