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Lecture 9

In which we explore the Stochastic Block Model.

1 The Gn,p,q problem

The Stochastic Block Model is a generic model for graphs generated by some parameters.
The simplest model and one we will consider today is the Gn,p,q problem.

Definition 1 (Gn,p,q graph distribution) The Gn,p,q distribution is a distribution on graphs
of n vertices where V is partitioned into two 2 subsets of equal size: V = V1 t V2. Then for
{i, j} pair of vertices in the same subset, Pr((i, j) ∈ E) = p and otherwise Pr((i, j) ∈ E) = q.

We will only consider the regime under which p > q. If we want to find the partition
V = V1 t V2, it is intuitive to look at the problem of finding the minimum balanced cut.
The cut (V1, V2) has expected size qn2/4 and any other cut will have greater expected size.

Our intuition should be that as p → q, the problem only gets harder. And for fixed ratio
p/q, as p, q → 1, the problem only gets easier. This can be stated rigorously as follows: If
we can solve the problem for p, q then we can also solve it for cp, cq where c > 1, by keeping
only 1/c edges and reducing to the case we can solve.

Recall that for the k-planted clique problem, we found the eigenvector x corresponding to
the largest eigenvalue of A − 1

2J . We then defined S as the vertices i with the k largest
values of |xi| and cleaned up S a little to get our guess for the planted clique.

In the Stochastic Block Model we are going to follow a similar approach, but we are instead
going to find the largest eigenvalue of A −

(p+q
2

)
J . Note this is intuitive as the average

degree of the graph is p(n/2 − 1) + q(n/2) ≈ n
2 (p + q). The idea is simple: Solve x the

largest eigenvector corresponding to the largest eigenvalue and define

V1 = {i : xi > 0}, V2 = {i : xi ≤ 0} (1)

and then clean up the sets. As we proceed to the analysis of this procedure, we fix V1, V2.
Prior to fixing, the adjacency matrix A was

(p+q
2

)
J .1 Upon fixing V1, V2, the average

1The diagonal should be zeroes, but this is close enough.
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adjacency matrix R looks different. For ease of notation, if we write a bold constant c for
a matrix, we mean the matrix cJ . It will be clear from context.

R =

(
p q

q p

)
(2)

Here we have broken up R into blocks according to the partition V1, V2.

Theorem 2 If p, q > log n/n then with high probability, ‖A−R‖ < O
(√

n(p+ q)
)
.

Proof: Define the graph G1 as the union of a Gn/2,p graph on V1 and Gn/2,p graph on
V2. Define the graph G2 a a Gn,q graph. Note that the graph G is distributed according to
picking a G1 and G2 graph and adding the partition crossing edges of G2 to G1. Let A1

and A2 be the respective adjacency matrices and define the follow submatrices:

A1 =

(
A′1

A′′1

)
, A2 =

(
A′2 A′′′2
A′′′2
† A′′2

)
. (3)

Then the adjacency matrix A is defined by

A = A1 +A2 −
(
A′2

A′′2

)
(4)

Similarly, we can generate a decomposition for R:

R =

(
p

p

)
+

(
q

)
−
(

q

q

)
. (5)

Then using triangle inequality we can bound ‖A − R‖ by bounding the difference in the
various terms.

‖A−R‖ ≤
∥∥∥∥A1 −

(
p

p

)∥∥∥∥+ ‖A2 − (q)‖+

∥∥∥∥( A′2
A′′2

)
−
(

q

q

)∥∥∥∥
≤ O(

√
np) +O(

√
nq) +O(

√
nq)

= O
(√

n(p+ q)
) (6)

The last line follows as the submatrices are adjacency matrices of Gn,p graphs and we can
apply the results we proved in that regime for p, q > log n/n. �

But the difficulty is that we don’t know R as R = R(V1, V2). If we knew R, then we would
know the partition. What we can compute is

∥∥A− (p+q
2

)
J
∥∥.2 We can rewrite R as

R =

(
p+ q

2

)
J +

p− q
2

(
1 −1

−1 1

)
(7)

2The rest of this proof actually doesn’t even rely on knowing p or q. We can estimate p+ q by calculating
the average vertex degree.
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Call the matrix on the right C. It is clearly rank-one as it has decomposition nχχ† where

χ = 1√
n

(
1
−1

)
. Therefore

∥∥∥∥(A− (p+ q

2

)
J

)
−
(
p− q

2

)
C

∥∥∥∥ = ‖A−R‖ ≤ O
(√

n(p+ q)
)
. (8)

Then A −
(p+q

2

)
J is close (in operator norm) to the rank 1 matrix

(p−q
2

)
C. Then their

largest eigenvalues are close. But since
(p−q

2

)
C has only one non-zero eigenvalue χ, finding

the corresponding eigenvector to the largest eigenvalue of A −
(p+q

2

)
J will be close to the

ideal partition as C describes the ideal partition. This can be formalized with the Davis-
Kaham Theorem.

Theorem 3 (Davis-Kahan) Given matrices M,M ′ with ‖M −M ′‖ ≤ ε where M has
eigenvalues λ1 ≤ . . . ≤ λn and corresponding eigenvectors v1, . . . ,vn andM ′ has eigenvalues
λ′1 ≤ . . . ≤ λ′n and corresponding eigenvectors v′1, . . . ,v

′
n, then

sin
(
angle

(
span(v1), span(v′1)

))
≤ ε

|λ′1 − λ2|
≤ ε

|λ1 − λ2 − ε|
. (9)

Equivalently,

min
{
‖v1 ± v′1‖

}
≤

√
2ε

λ1 − λ2 − ε
. (10)

The Davis Kahan Theorem with M ′ = A−
(p+q

2

)
J,M =

(p−q
2

)
C, and ε = O

(√
n(p+ q)

)
states that

min
{
‖v′ ± χ‖

}
≤ O

( √
a+ b

a− b−O
(√
a+ b

)) (11)

where v′, the eigenvector associated with the largest eigenvalue of A −
(p+q

2

)
J and a =

pn/2, b = qn/2, the expected degrees of the two parts of the graph. Choose between ±v′

for the one closer to χ. Then

‖v′ − χ‖2 ≤ O

( √
a+ b

a− b−O
(√
a+ b

))2
 . (12)

Recall that
∑

i(v
′
i − χi)

2 = ‖v′ − χ‖2. If v′i and χi disagree in sign, then this contributes
at least 1/n to the value of ‖v′ − χ‖2. Equivalently, n · ‖v′ − χ‖2 is at least the number
of misclassified vertices. It is simple to see from here that if a − b ≥ cε

√
a+ b then we

can bound the number of misclassified vertices by εn. This completes the proof that the
proposed algorithm does well in calculating the partition of the Stochastic Block Model.
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