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Lecture 9

In which we explore the Stochastic Block Model.

1 The G, ,, problem

The Stochastic Block Model is a generic model for graphs generated by some parameters.
The simplest model and one we will consider today is the G, ;4 problem.

Definition 1 (G, , graph distribution) The G, , distribution is a distribution on graphs
of n vertices where V' is partitioned into two 2 subsets of equal size: V- =V UVs. Then for
{1, 7} pair of vertices in the same subset, Pr((i,j) € E) = p and otherwise Pr((i,j) € E) = q.

We will only consider the regime under which p > ¢q. If we want to find the partition
V = Vi U Vs, it is intuitive to look at the problem of finding the minimum balanced cut.
The cut (Vi, V) has expected size gn?/4 and any other cut will have greater expected size.

Our intuition should be that as p — ¢, the problem only gets harder. And for fixed ratio
p/q, as p,q — 1, the problem only gets easier. This can be stated rigorously as follows: If
we can solve the problem for p, ¢ then we can also solve it for ¢p, cq where ¢ > 1, by keeping
only 1/c edges and reducing to the case we can solve.

Recall that for the k-planted clique problem, we found the eigenvector x corresponding to
the largest eigenvalue of A — %J . We then defined S as the vertices ¢ with the k largest
values of |z;| and cleaned up S a little to get our guess for the planted clique.

In the Stochastic Block Model we are going to follow a similar approach, but we are instead
going to find the largest eigenvalue of A — (I’Qﬂ) J. Note this is intuitive as the average
degree of the graph is p(n/2 — 1) + q(n/2) ~ 5(p + ¢). The idea is simple: Solve x the
largest eigenvector corresponding to the largest eigenvalue and define

Vi={i:z; >0}, Vo={i:z; <0} (1)

and then clean up the sets. As we proceed to the analysis of this procedure, we fix V1, V5.
Prior to fixing, the adjacency matrix A was (%) J.!' Upon fixing V1, Va, the average

!The diagonal should be zeroes, but this is close enough.



adjacency matrix R looks different. For ease of notation, if we write a bold constant c for
a matrix, we mean the matrix cJ. It will be clear from context.

(32

Here we have broken up R into blocks according to the partition V7, V5.

Theorem 2 If p,q > logn/n then with high probability, |A — R|| < O (\/n(p + q))

PROOF: Define the graph G as the union of a G, /5, graph on V; and G,/ graph on
Va. Define the graph Gs a a G, 4 graph. Note that the graph G is distributed according to
picking a G7 and G4 graph and adding the partition crossing edges of Go to G1. Let A;
and As be the respective adjacency matrices and define the follow submatrices:

Al A/ A///
Al:( 1Aa'>’ AF(A’f A) ®)

Then the adjacency matrix A is defined by

A=A+ Ay — (%) (4)

Similarly, we can generate a decomposition for R:

= (015)+ 9 ()

Then using triangle inequality we can bound ||A — R|| by bounding the difference in the
various terms.

HA—RHgHAl—<L‘?>H+|’AQ—(Q)”+H(AIQA/Q/)_<qq>H

< O(ynp) + O(y/ng) + O(V/na) (6)
:O< n@+a0

The last line follows as the submatrices are adjacency matrices of G, ;, graphs and we can
apply the results we proved in that regime for p,q > logn/n. O

But the difficulty is that we don’t know R as R = R(V1, V). If we knew R, then we would
know the partition. What we can compute is HA — (p—;q) J H2 We can rewrite R as

p+q p—q( 1 |-1
R = J + 7
2 2 \ -1]1 @)
2The rest of this proof actually doesn’t even rely on knowing p or ¢. We can estimate p+ ¢ by calculating
the average vertex degree.




Call the matrix on the right C. It is clearly rank-one as it has decomposition nxx! where

X = ﬁ < _11 ) Therefore

H<A (p;q) J) - <p;q> CH — 4~ Rl <O (Valr+a). ®)

Then A — (%) J is close (in operator norm) to the rank 1 matrix (I’Q;q) C. Then their
largest eigenvalues are close. But since (%) C has only one non-zero eigenvalue Y, finding
the corresponding eigenvector to the largest eigenvalue of A — (Z%) J will be close to the
ideal partition as C' describes the ideal partition. This can be formalized with the Davis-
Kaham Theorem.

Theorem 3 (Davis-Kahan) Given matrices M, M’ with ||M — M'|| < ¢ where M has

eigenvalues A\ < ... < A\, and corresponding eigenvectors vy, ..., v, and M’ has eigenvalues
N < ... <X, and corresponding eigenvectors vi,..., v} then
sin (angle (span(vy),span(v}))) < < < < . 9)
|)\1—)\2| |)\1—/\2—€‘
Equivalently,
2e
min {|vi £ vi[|} < V2 (10)

T A — Ay — g
The Davis Kahan Theorem with M’ = A — (2£¢) J,M = (25%) C, and e = O ( n(p + q))

states that
va+b
a—b—O(\/a+b)
where v/, the eigenvector associated with the largest eigenvalue of A — (L;w) J and a =

pn/2,b = qn/2, the expected degrees of the two parts of the graph. Choose between +v’
for the one closer to x. Then

min {||v' £ x|} < O ( (11)

va-+b )) (12)

/ 2
Vo= (a—b—O(\/m
Recall that Y, (v} — xi)? = ||[v/ — x||>. If v} and x; disagree in sign, then this contributes
at least 1/n to the value of |[v/ — x||?. Equivalently, n - ||v/ — x||? is at least the number
of misclassified vertices. It is simple to see from here that if a — b > c.v/a + b then we
can bound the number of misclassified vertices by en. This completes the proof that the
proposed algorithm does well in calculating the partition of the Stochastic Block Model.



