
U.C. Berkeley — CS294: Beyond Worst-Case Analysis Handout 8
Luca Trevisan September 19, 2017

Scribed by Luowen Qian

Lecture 8

In which we use spectral techniques to find certificates of unsatisfiability for random k-SAT
formulas.

1 Introduction

Given a random k-SAT formula with m clauses and n variables, we want to find a certificate
of unsatisfiability of such formula within polynomial time. Here we consider k as fixed,
usually equal to 3 or 4. For fixed n, the more clauses you have, the more constraints you
have, so it becomes easier to show that these constraints are inconsistent. For example, for
3-SAT,

1. In the previous lecture, we have shown that if m > c3 · n for some large constant
c3, almost surely the formula is not satisfiable. But it’s conjectured that there is no
polynomial time, or even subexponential time algorithms that can find the certificate
of unsatisfiability for m = O(n).

2. If m > c · n2 for some other constant c, we’ve shown in the last time that we can
find a certificate within polynomial time with high probability that the formula is not
satisfiable.

The algorithm for finding such certificate is shown below.

function Is-3-SAT-Satisfiable(description of the 3-SAT formula)
for b1 ∈ {0, 1} do

x1 ← b1
if Is-2-SAT-Satisfiable

(
clauses that contains x1 = b1

)
then

return ⊥
return UNSATISFIABLE

We know that we can solve 2-SATs in linear time, and approximately(
n−1
2

)
·m(

n
3

)
· 2

=
3m

2n+O(1)
>

3

2
cn−O(1)
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clauses contains x1 = b1. Similarly when c is sufficiently large, the 2-SATs will almost
surely be unsatisfiable. When a subset of the clauses is not satisfiable, the whole
3-SAT formula is not satisfiable. Therefore we can certify unsatisfiability for 3-SATs
with high probability.

In general for k-SAT,

1. If m > ck · n for some large constant ck, almost surely the formula is not satisfiable.

2. If m > c′k ·nk−1 for some other constant c′k, we can construct a very similar algorithm.

function Is-k-SAT-Satisfiable(description of the k-SAT formula)
for b1, b2, ..., bk−2 ∈ {0, 1}k−2 do

x1, x2, ..., xk−2 ← b1, b2, ..., bk−2
if Is-2-SAT-Satisfiable(

clauses that contains x1 = b1 ∨ x2 = b2 ∨ ... ∨ xk−2 = bk−2) then
return ⊥

return UNSATISFIABLE

Since for every fixed assignments to the first k − 2 variables, approximately(
n−k+2

2

)(
n
k

)
2k−2

=
k!

(nk−2 +O(nk−3))2k−1

portion of the m clauses remains, we expect the constant c′k = Ω
(
2k

k!

)
and the running

time is O(2km).

So what about m’s that are in between? It turns out that we can do better with spectral
techniques. And the reason that spectral techniques work better is that unlike the previ-
ous method, it does not try all the possible assignments and fails to find a certificate of
unsatisfiability.

2 Reduce certifying unsatisfiability for k-SAT to finding largest
independent set

2.1 From 3-SAT instances to hypergraphs

Given a random 3-SAT formula f , which is an and of m random 3-CNF-SAT clauses over
n variables x1, x2, ..., xn (abbreviated as vector x), i.e.

f(x) =

m∧
i=1

(
xσi,1 = bi,1 ∨ xσi,2 = bi,2 ∨ xσi,3 = bi,3

)
,
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where σi,j ∈ [n], bi,j ∈ {0, 1}, ∀i ∈ [m], σi,1 < σi,2 < σi,3 and no two (σi,1, bi,1, σi,2, bi,2, σi,3, bi,3)
are exactly the same. Construct hypergraph Hf = (X,E), where

X = {(i, b)|i ∈ [n], b ∈ {0, 1}}

is a set of 2n vertices, where each vertex means an assignment to a variable, and

E = {ej |j ∈ [m]} , ej = {(σj,1, bj,1), (σj,2, bj,2), (σj,3, bj,3)}

is a set of m 3-hyperedges. The reason we’re putting in the negation of b is that a 3-CNF
clause evaluates to false if and only if all three subclauses evaluate to false. This will be
useful shortly after.

First let’s generalize the notion of independent set for hypergraphs.

Definition 1 An independent set for hypergraph H = (X,E) is a set S ⊆ X that satisfies
∀e ∈ E, e 6⊆ S.

Proposition 1 If f is satisfiable, Hf has an independent set of size at least n. Equivalently
if the largest independent set of Hf has size less than n, f is unsatisfiable.

Proof: Assume f is satisfiable, let x ← y be a satisfiable assignment, where y ∈ {0, 1}n.
Then S = {(xi, yi)|i ∈ [n]} is an independent set of size n. If not, it means some hyperedge
ej ⊆ S, so σj,1 = bj,1 ∧ σj,2 = bj,2 ∧ σj,3 = bj,3 and the j-th clause in f evaluates to false.
Therefore f evaluates to false, which contradicts the fact that y is a satisfiable assignment.
�

We know that if we pick a random graph that’s sufficiently dense, i.e. the average degree
d > lnn, by spectral techniques we will have a certifiable upper bound on the size of the

largest independent set ofO
(
n√
d

)
with high probability. So if a random graph has Ω(n log n)

random edges, we can prove that there’s no large independent set with high probability.

But if we have a random hypergraph with Ω(n log n) random hyperedges, we don’t have any
analog of spectral theories for hypergraphs that allow us to do this kind of certification. And
from the fact that the problem of certifying unsatisfiability of random formula of Ω(n log n)
clauses is considered to be hard, we conjecture that there doesn’t exist a spectral theory for
hypergraphs able to replicate some of the things we are able to do on graphs.

However, what we can do is possibly with some loss, to reduce the hypergraph to a graph,
where we can apply spectral techniques.

2.2 From 4-SAT instances to graphs

Now let’s look at random 4-SATs. Similarly we will write a random 4-SAT formula f as:

f(x) =
m∧
i=1

(
xσi,1 = bi,1 ∨ xσi,2 = bi,2 ∨ xσi,3 = bi,3 ∨ xσi,4 = bi,4

)
,
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where σi,j ∈ [n], bi,j ∈ {0, 1}, ∀i ∈ [m], σi,1 < σi,2 < σi,3 < σi,4 and no two (σi,1, bi,1, ..., σi,4, bi,4)
are exactly the same. Similar to the previous construction, but instead of constructing an-
other hypergraph, we will construct just a graph Gf = (V,E), where

V = {(i1, b1, i2, b2)|i1, i2 ∈ [n], b1, b2 ∈ {0, 1}}

is a set of 4n2 vertices and

E = {ej |j ∈ [m]} , ej = {(σj,1, bj,1, σj,2, bj,2), (σj,3, bj,3, σj,4, bj,4)}

is a set of m edges.

Proposition 2 If f is satisfiable, Gf has an independent set of size at least n2. Equivalently
if the largest independent set of Hf has size less than n2, f is unsatisfiable.

Proof: The proof is very similar to the previous one. Assume f is satisfiable, let x ← y
be a satisfiable assignment, where y ∈ {0, 1}n. Then S = {(xi, yi, xj , yj)|i, j ∈ [n]} is
an independent set of size n2. If not, it means some edge ej ⊆ S, so σj,1 = bj,1 ∧ σj,2 =
bj,2∧σj,3 = bj,3∧σj,4 = bj,4 and the j-th clause in f evaluates to false. Therefore f evaluates
to false, which contradicts the fact that y is a satisfiable assignment. �

From here, we can observe that Gf is not a random graph because some edges are forbidden,
for example when the two vertices of the edge has some element in common. But it’s very
close to a random graph. In fact, we can apply the same spectral techniques to get a
certifiable upper bound on the size of the largest independent set if the average degree
d > lnn, i.e. if m = Ω(n2 log n), we can certify unsatisfiability with high probability, by
upper bounding the size of the largest independent set in the constructed graph.

We can generalize this results for all even k’s. For random k-SAT where k is even, if
m > ckn

k/2 log n, we can certify unsatisfiability with high probability, which is better than
the previous method which requires m = Ω(nk−1). The same nk/2(log n)O(1) is achievable
for odd k, but the argument is significantly more complicated.

2.3 Certifiable upper bound for independent sets in modified random
sparse graphs

Despite odd k’s, another question is that in this setup, can we do better and get rid of
the log n term? This term is coming from the fact that spectral norm break down when
the average degree d < lnn. However it’s still true that random graph doesn’t have any
large independent sets even when the average degree d is constant. It’s just that the
spectral norm isn’t giving us good bounds any more, since the spectral norm is at most

O
(√

max d
)

= O
(√

logn
log logn

)
. So is there something tighter than spectral bounds that

could help us get rid of the log n term? Could we fix this by removing all the high degree
vertices in the random graph?

This construction is due to Feige-Ofek. Given random graph G ∼ Gn,p, where the average
degree d = np is some large constant. Construct G′ by taking G and removing all edges
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incident on nodes with degree higher than 2d̄ where d̄ is the average degree of G. We denote
A for the adjacency matrix of G and A′ for that of G′. And it turns out,

Theorem 3 With high probability,
∥∥A′ − d

nJ
∥∥ ≤ O (√d).

It turns out to be rather difficult to prove. Previously we saw spectral results on random
graphs that uses matrix traces to bound the largest eigenvalue. In this case, it’s hard to
do so because the contribution to the trace of a closed walk is complicated by the fact that
edges have dependencies. The other approach is that given random matrix M , we will try
to upper bound ‖M‖ = max

x

xTMx
‖x‖2 . A standard way for this is to that for every solution,

count the instances of M in which the fixed solution is good, and argue that the number of
the fixed solutions is small, which tells us that there’s no good solution. The problem here
is that the set of solutions is infinitely large. So Feige-Ofek discretize the set of vectors, and
then reduce the bound on the quadratic form of a discretized vector to a sum of several
terms, each of which has to be carefully bounded.

We always have

max IndSet(G) ≤ max IndSet(G′) ≤ n

d

∥∥∥∥A′ − d

n
J

∥∥∥∥
and so, with high probability, we get an O

(
n√
d

)
polynomial time upper bound certificate

to the size of the independent set for a Gn,d/n random graph. This removes the extra logn
term from our analysis of certificates of unsatisfiability for random k-SAT when k is even.

3 SDP relaxation of independent sets in random sparse graphs

In order to show a random graph has no large independent sets, a more principled way is to
argue that there is some polynomial time solvable relaxation of the problem whose solution
is an upper bound of the problem.

Let SDPIndSet(G) be the optimum of the following semidefinite programming relaxation
of the Independent Set problem, which is due to Lovász:

max
∑
i∈V
〈xi,x0〉

s.t.

||x0||2 = 1

〈x0,xi〉 = ||xi||2 ∀i ∈ V
〈xi,xj〉 = 0 ∀(i, j) ∈ E

Since it’s the relaxation of the problem of finding the maximum independent set, max IndSet(G) ≤
SDPIndSet(G) for any graph G. And this relaxation has a nice property.
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Theorem 4 For every 0 < p < 1, and for every graph G, we have

SDPIndSet(G) ≤ 1

p
· ||pJ −A||

where J is the all-one matrix and A is the adjacency matrix of G.

Proof: First we note that SDPIndSet(G) is at most

max
∑
i∈V
〈xi,x0〉

s.t.

||x0||2 = 1∑
i∈V
〈x0,xi〉 =

∑
i∈V
||xi||2∑

(i,j)∈E

〈xi,xj〉 = 0

and this is equal to

max

(∑
i∈V 〈xi,x0〉

)2∑
i∈V ||xi||2

s.t.

||x0||2 = 1∑
i∈V
〈x0,xi〉 =

∑
i∈V
||xi||2∑

(i,j)∈E

〈xi,xj〉 = 0

which is at most

max

∥∥∑
i∈V xi

∥∥2∑
i∈V ||xi||2

s.t.

||x0||2 = 1∑
i∈V
〈x0,xi〉 =

∑
i∈V
||xi||2∑

(i,j)∈E

〈xi,xj〉 = 0

because
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∑
i∈V
〈xi,x0〉 =

〈∑
i∈V

xi,x0

〉
≤

∥∥∥∥∥∑
i∈V

xi

∥∥∥∥∥ · ||x0|| =

∥∥∥∥∥∑
i∈V

xi

∥∥∥∥∥
Finally, the above optimization is equivalent to the following

max

∥∥∑
i∈V xi

∥∥2 − 1
p

∑
i,j Ai,j〈xi,xj〉∑

i∈V ||xi||2
s.t.

||x0||2 = 1∑
i∈V
〈x0,xi〉 =

∑
i∈V
||xi||2∑

(i,j)∈E

〈xi,xj〉 = 0

which is at most the unconstrained problem

max

∥∥∑
i∈V xi

∥∥2 − 1
p

∑
i,j Ai,j〈xi,xj〉∑

i∈V ||xi||2
= max

∑
i,j

(
J − 1

pA
)
i,j
〈xi,xj〉∑

i∈V ||xi||2

= λmax

(
J − 1

p
A

)
≤ 1

p
||pJ −A||.

�

Recall from the previous section that we constructed G′ by removing edges from G, which
corresponds to removing constraints in our semidefinite programming problem, so SDPIndSet(G) ≤
SDPIndSet(G′) ≤

∥∥∥J − 1
pA
′
∥∥∥, which is by theorem 3 at most O

(
n√
d

)
with high probability.

4 SDP relaxation of random k-SAT

From the previous section, we get an idea that we can use semidefinite programming to
relax the problem directly and find a certificate of unsatisfiability for the relaxed problem.
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Given a random k-SAT formula f :

f(x) =

m∧
i=1

k∨
j=1

xσi,j = bi,j

=
m∧
i=1

k∨
j=1

xσi,j = bi,j

=
m∧
i=1

k∧
j=1

xσi,j = bi,j .

The satisfiability of f is equivalent of the satisfiability of the following equations:

x2i = xi ∀i ∈ [n]

m∑
i=1

1−
k∏
j=1

(
(−1)bi,jxσi,j + bi,j

) = m

Notice that if we expand the polynomial on the left side, there are some of the monomials
having degree higher than 2 which prevents us relaxing these equations to a semidefinite
programming problem. In order to resolve this, ∀A ⊆ x and |A| ≤ k/2 we introduce
xA =

∏
i∈A xi. Then we can relax all variables to be vectors, i.e.

‖x∅‖2 = 1

〈xA,xB〉 = 〈xC ,xD〉 ∀A ∪B = C ∪D
m∑
i=1

1−
k∏
j=1

(
(−1)bi,jxσi,j + bi,j

) = m rewritten as quadratic forms of xA

For example, if we have a 4-SAT clause

x3 ∨ x4 ∨ x7 ∨ x10,

we can rewrite it as

1− (1− x3) · x4 · (1− x7) · x10 = 1− x4x10 + x3x4x10 + x3x7x10 − x3x4x7x10

= 1− x{4}x{10} + x{3,4}x{10} + x{3,7}x{10} − x{3,4}x{7,10}.

For this relaxation, we have:

1. If m < c(k, n)nk/2, the SDP associated with the formula is feasible with high proba-
bility, where c(k, n) = 1/no(1) for every fixed k.

2. If m > c′(k)nk/2, the SDP associated with the formula is not feasible with high prob-
ability, where c′(k, n) is a constant for every fixed even k, and c′(k, n) = poly(log n)
for every fixed odd k.
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