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Lecture 7

In which we discussed planted clique distribution, specifically, we talked about how to find
a planted clique in a random graph. We heavily relied upon our material back in lecture 2
and lecture 3 in which we covered the upper bound certificate for max clique in Gn, 1

2
. At the

end of this class, we wrapped up this topic and started the topic of k-SAT.

1 Planted Clique

To start with, we describe a distribution of graphs with a planted clique. Suppose that we
sample G from Gn, 1

2
and we want to modify G s.t. it has a size k clique, i.e., we have a

clique S ⊆ V with |S| = k. The following code describes a sampler for the distribution.

• G← Gn, 1
2

• Pick a subset of vertices S from V s.t. |S| = k

• Sample Edges:

edge (u, v) exists w.p.

{
1 if u, v ∈ S
1
2 otherwise

Note: We are only interested in the case k ≥ 2 log n, which is the case in which the planted
clique is, with high probability, larger than any pre-existing clique

1.1 Finding the planted clique when k �
√
n log n

When k �
√
n log n, finding the planted clique is easy because the k vertices in the planted

clique are precisely the k vertices of higher degree.

Lemma 1 In Gn, 1
2
, w.h.p., for every vertex v, n−1

2 −
√
n− 1

√
lnn ≤ deg(v) ≤ n−1

2 +
√
n− 1

√
lnn.
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Proof: For each vertex v in a graph G ∼ Gn, 1
2
, we have deg(v)= sum of n − 1 random

bits, which is simply a Binomial distribution. By Chernoff bound,

P

[∣∣∣∣∣∑
i

xi −
n− 1

2

∣∣∣∣∣ > t

]
≤ 2e−

2t2

n−1

For this probability to be upper bounded, say by 1
n2 , we can fix t =

√
(n− 1) lnn s.t.

t2 ≥ (n− 1) lnn and this completes the proof that with high probability, a vertex v in Gn, 1
2

random graph has degree n−1
2 ±

√
n− 1

√
lnn. �

Now we consider a vertex v in the planted clique S.

Claim 2 In a graph with a planted clique coming from a Gn, 1
2

random graph to which we

add all the edges necessary to make S a clique, each node in S will receive ≥ 0.4k added
edges w.h.p. over the sampling of graph.

Proof: Again, we regard the number of neighbors of a vertex v in S as a sum of Bernoulli
distribution and denote it by X. By Chernoff bound, we obtain an upper bound on the
probability that a vertex v ∈ S has more than 0.6k neighbors in S in a random Gn, 1

2
graph.

P [X > 0.6k] = P [X − 0.5k > 0.1k] ≤ e−
0.22∗k

2 = e−O(k)

Since the probability is exponentially small in k, we can conclude that a node in S, with
high probability, has less than 0.6k edges in the original Gn, 1

2
random graph, and thus at

least 0.4k edges will be added to each vertex in S. �

Corollary 3 In a graph with a planted clique, a vertex in S will have degree ≥ n−1
2 +

36
√
n log n. (Note: we have k = 100

√
n log n in this example)

Therefore, we show that in graph with a large planted clique, we can distinguish it from Gn, 1
2

distribution by the existence of node with large degree, i.e., degree over n−1
2 + 4

√
n log n.

1.2 Distinguish Planted Clique Distribution with k �
√
n

Moving on to the case in which k is of the order of
√
n, we first show how to distinguish

graphs sampled from the planted clique distribution from Gn, 1
2

random graphs.

Say that k = 100
√
n, and let A be the adjacency matrix of a graph from the planted clique

distribution. Then
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∣∣∣∣∣∣∣∣A− 1

2
J

∣∣∣∣∣∣∣∣ ≥ λmax

(
A− 1

2
J

)
= max

x

xT
(
A− 1

2J
)
x

xTx

≥
1Ts
(
A− 1

2J
)
1s

||1s||2

=
1Ts A1s − 1

21
t
sJ1s

k

=
1

k

(
k2 − k − 1

2
k2
)

=
k

2
− 1

Now, recall he following theorem from Lecture 2.

Theorem 4 If A is the adjacency matrix of a Gn, 1
2

graph, w.h.p.,
∣∣∣∣A− 1

2J
∣∣∣∣ ≤ 2

√
n.

Therefore, we can identify graph with a planted clique from a random Gn, 1
2

distribution

using this method.

1.3 Uniqueness of Maximum Clique in Planted Clique Distribution

In order to show that we can find the planted clique from a graph, we want to prove first
that the maximum clique in planted clique Distribution is unique. In other words, we want
to prove that the planted clique is the maximum clique in planted clique distribution. We
first prove the following lemmas:

Lemma 5 For each vertex not in the planted clique, i.e., v ∈ V − S, #of v’s neighbors in
S ≤ .5k +

√
k − 1

√
lnn ≤ .55k.

Proof: This is largely similar to Lemma 1. We see this as a sum of k − 1 random 0 − 1
bits and by Chernoff bound, we have:

P

[∣∣∣∣∣∑
i

xi −
k − 1

2

∣∣∣∣∣ > t

]
≤ e−

2t2

k−1

For this probability to be upper bounded, say by 1
n , we can choose a t s.t. t2 ≥ (k −

1) lnn. Therefore, we pick t =
√

(k − 1) lnn and this completes the proof that, with high
probability, each vertex not in the planted clique has less no more than .55k neighbors in
the planted clique. �
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Lemma 6 G sampled from Gn, 1
2
, w.h.p., has a largest clique of size 2 log n. (proved in

lecture 2)

Claim 7 Under the above assumptions, S is the unique clique of size k in G.

Proof: Suppose, for the sake of contradiction, we find a clique T s.t. T 6= S, |T | ≥ k.
Since T, S are both cliques by assumption, T − S is also clique. Gn, 1

2
has a largest clique

of size ≤ 2 log n w.h.p., so |T − S| ≤ 2 log n since it is a clique in Gn, 1
2
. Consider a vertex

t ∈ T − S: the number of t’s neighbors in S ≥ |T | ≥ |T ∩ S| is at least k − 2 log n > 0.55k,
but this contradicts Lemma 5, which states that t should have no more than .55k neighbors
in S. �

1.4 Finding the Planted Clique

Now that we have shown the uniqueness of maximum clique, we want to proceed and show
that we can find the planted clique. Let A be the adjacency matrix of a Gn, 1

2
random graph

with a planted clique of size k = 100
√
n, and let x be the maximizer of

xT
(
A− 1

2J
)
x

||x||2
≥ k

2
− 1 = 50

√
n− 1

We will show below that x is close to the indicator vector of S.

First, we need to note that we are no longer using the sampling method described earlier
to attain a planted clique distribution. Alternatively, we sample our graph G from random
Gn, 1

2
distribution, pick a subset of vertices S from G and add to it the necessary edges to

make S a clique. From this point of view, we have G = Gn, 1
2

+Gclique, where G is the graph

with a planted clique and Gclique is a distribution of edges that we need to add. We can
then represent the adjacency matrix of G as:

A = Arandom +Aclique

where Arandom ∼ Gn, 1
2

and Aclique ∼ Gk, 1
2
.

By the theorem shown in lecture 2 (which we just recapped above), we have the following
equations with high probability: ∣∣∣∣∣∣∣∣Arandom −

1

2
J

∣∣∣∣∣∣∣∣ ≤ 2
√
n

∣∣∣∣∣∣∣∣Aclique −
1

2
1s1

T
s

∣∣∣∣∣∣∣∣ ≤ 2
√
k = o(k)

Now we combine the equations listed above, and wlog, let ||x|| = 1.
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50
√
n− 1 =

k

2
− 1

≤ xT

(
A− 1

2
J

)
x

= xT

(
Aclique +Arandom −

1

2
J

)
x

With ||Arandom − 1
2J || ≤ 2

√
n from above, we have

xTAcliquex ≥ 48
√
n = 0.48k.

Therefore, xT
(
Aclique − 1

21s1
T
s + 1

21s1
T
s

)
x ≥ 0.48k. With

∣∣∣∣Aclique − 1
21s1

T
s

∣∣∣∣ = o(k) shown
above, we can conclude that

xT

(
1

2
1s1

T
s

)
x ≥ (0.48− o(1))k

That is,
〈x,1S〉2 ≥ (0.96− o(1))k

and, up to passing to −x, which has the same set of largest k entries in absolute value, we
have 〈x,1S〉 ≥

√
.96k − o(k) ≥ .979

√
k, for sufficiently large k.

This means that, up to scaling, x and 1S are nearly identical.

||
√
kx− 1S ||2 = k||x||2 + ||1S || − 2

√
k〈x,1S〉

≤ 2k · (1− .979)

≤ .042k

Let L be the set of k largest entries of
√
kx, and hence of x, breaking ties arbitrarily, and let

t be the threshold value for membership in L (that is,
√
kxi ≥ t for all i ∈ L and

√
kxi ≤ t

for all i 6∈ L). Suppose that there are B elements of S that are not in L, and hence B
elements not in S that are in L. Then

||
√
kx− 1S ||2 =

∑
i∈S

(
√
kxi − 1)2 +

∑
i 6∈S

kx2i

≥ B · (1− t)2 +Bt2

≥ 1

2
B

And we conclude that B ≤ .084k, that is, L contains at least .9k of the k elements of S.
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We now present an algorithm to find the planted clique. Let L be the set of k vertices that
has largest |xi|. We then consider each vertex v ∈ L. If v ∈ S, by our proof above, it should
have ≥ 0.9 neighbors in L. If v /∈ S, v should have ≤ 0.55k + 0.2k = 0.75k neighbors in L.
Therefore, we can easily verify a vertex is in S by looking at its number of neighbors in L,
and this gives us an algorithm.

• Algorithm(G):

• A← adjacency matrix of G

• x← eigenvector of largest eigenvalue to A− 1
2J

• L← set of k vertices with largest |xi|

• clique ← set of vertices with at least 0.8k neighbors in L

It is still an open problem to find a planted clique of size o(
√
n)

2 Random k-SAT and Proof of Unsatisfiability

We start the topic on random k-SAT formulas. In k-SAT problem, we are trying to decide
whether a formula in CNF with each clause containing up to k literals is satisfiable. We
note in class that checking satisfiability for randomly generated equations is hard even in
average case. Similar to the Gn,p model, we generate a k-SAT formula on n variable with
parameter p s.t. each of the

(
n
k

)
2k clauses exists with probability p.

Besides the model above, we also briefly mention another model, in which we randomly
pick m of the

(
n
k

)
2k possible clauses. (Note: these two models are closely related when we

have m = p
(
n
k

)
2k).

To gain more insights, we discussed the example of 3-SAT problem. It has an expected
number of satisfying assignments 2n(78)m. We also observe that for any 3-SAT instance
f , we have P [f is satisfiable] ≤ E [#of satisfying assignments to variables] = 2n(78)m which
goes to 0 if m > log 8

7
2n.
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