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Summary of Lecture 6

In which we study the spectrum of random graphs.

In past lectures we used the fact that, for every p(n) > lo;gl ' there is a high probability that if
we sample G' ~ G, () and let A be its adjacency matrix, we have [|A—pJ[| < O(y/p(n) - n).
In particular, there is a high probability that ||A — J/2|| < O(y/n) when A is the adjacency

matrix of a graph sampled from G, 1.
2

Today we will prove a slightly weaker result, and give an overview of the proofs of the
stronger results.

We will use the following basic facts from linear algebra. Let M be a real symmetric matrix:
then M has real eigenvalues, and let us call them Aj, ..., A, so that [A\1| > [Aa] > -+ > | Ay
By definition, ||[M]| = |A1|. We have

1. >, My =), A, and this quantity is called the trace of the matrix.

2. The eigenvalues of M* are \¥ ... \F

From the above two facts we have that, if k is even,

D (M) = Z)\f = Z Ail*

i
and so
IM[F <> (MF)i < n- || P

2

If we choose k = Inn, we have

1
%
k
[|M]] < (Z(M )z‘z‘) <e-|[M]]
1

Thus we can approximate the spectral norm of a matrix by a computation of the trace of
a power of the matrix. If M is a random matrix, then computing EZZ(M’“)“ will give us
high-probability upper bounds to the spectral norm.

Let A be the adjacency matrix of a G,, 1/, random graph; we let M be the random matrix
M :=2-(A—E A). We see that M is such that the diagonal entries are zero, all other entries



are equally likely to be +1 or —1, and, other than satisfying the constraints M;; = M;, all
entries are mutually independent.

We first notice that, by symmetry
EY (M*)ii =n-E(MF)1,
i
and by definition of matrix product and by linearity of expectation we have

E(Mk)l,l = Z EML(M ’ Mahaz T Mak72»ak71 ’ Makflvl

a1,...,ap—1€V

For each entry (a,b), we have that EM!, = 0if ¢ is odd and EM!, =1 if ¢ is even, so the
expressions whose average we want to cc;mpute above have averagé zero is there is a {a, b}
that occurs an odd number of times in the sequence {1,a1},...,{ax_1,1}, and the average
is one if all pairs occur an even number of times in the sequence.

Thus, E(Mk)l,l is equal to the number of sequences 1,aq,...,ap_1,1 such that, in the
sequence {1,a1},...,{ax_1, 1}, each pair appears an even number of times.

We prove that such number is at most 2¥ - k¥/2 . n¥/2 by showing how to represent each
sequence using at most k + glog k + glogn in the following way: each element a; is rep-
resented either as (0, a;), which takes 1 4 logn bits, if a; appears for the first time in the
sequence at location ¢, and as (0,j) otherwise, where j < i is such that a; = a;, which
requires 1 + log k bits. Using the fact that the sequence can contain at most k/2 distinct
pairs and hence at most k/2 distinct vertices (not counting the start) we get the bound.

This means that

EZ(Mk)M S 2k . kk:/? X n1+k/2

)

If we take k = lgn we have

Pl|M]| > 8] = Pl|M]* > %] <

EY,(MF)y . (%M)k

tk t

And so with high probability ||M]| < 4evnlInn.

A more careful counting shows that the number of sequences is actually at most 20®)nk/2
leading to the conclusion that ||M|| < O(y/n) with high probability. We can understand the
set of sequences that we want to count in the following way: a sequence 1,a1,...,ar_1,1
defines a graph over the vertices {1,a1,...,ar_1,1} with edges {{1,a1},...,{ar—1,1}}.
Because of repetitions, we have at most k/2 edges, and hence at most 1 + k/2 vertices. In
our previous counting argument, we upper bounded the number of sequences with £ distinct
vertices (not counting the start vertex 1) as (lg) -kF=%.n’, which increases with ¢ and maxes
out at £ = k/2, thus it is interesting to see, as a first step toward a better proof, if the



count can be improved in the ¢ = k/2. In this case, the graph is a tree, which is visited in
a depth-first search order. This means that, at every step in the sequence, we either see a
new vertex or we backtrack in our depth-first search, and we only need to spend one bit to
represent the latter even, leading to a much better 2% - n¥/2 bound. Obtaining a 20*)pk/2
bound for all sequences is much harder and we will not attempt to do so.

Let us briefly review how to generalize the analysis to Gy, for p < 1/2. In this case we will
look at
M:=A-FEA=A—pJ+pl

and we see that M is symmetric, it has zeroes on the diagonals, and the off-diagonal entries
satisfy
EM;; =0

EM?;=p—p*<p

EM]; <p Vk>2

As before

Etrace(M") = nE(M")14

and

E(Mk)l,l = Z EMia, - Mayay -+ May_y,a_y - May_1 1

al,...,ax—1€V

Now the expectation on the right-hand side is zero if there is a pair that occurs only
once in the sequence. Otherwise, it is p’ where ¢ is the number of distinct pairs in the
sequence. The contribution to the weighted sum of sequences with k/2 distinct “edges” is
thus 20®)pk/2pk/2 When p > 8% this is the dominant term, and the whole weighted sum

n

is at most 20(F)p¥/2pk/2 leading to a high probability bound ||M|| < O(y/pn).

Unfortunately, for p = o (10%) we do not have the high probability bound ||M|| < O(,/pn).
To see why not, first observe that, for every p > 1/n there is a high probability that the

logn
loglogn

largest degree in the graph is € ( ) Furthermore, if a graph has a vertex of large

degree, then ||A — pJ|| will have large spectral norm.

Lemma 1 Let G be a graph, A its adjacency matriz, and suppose that G has a vertex v of
degree D > 1. Then, for every p, we have

|A—pJ|| > VD —2pD

PRrooOF: Let ui,...,up be the D neighbors of v. Consider the vector x defined as x, = 1,
Xy, = 1/vV/D fori=1,...,D, and x, = 0 for all other vertices z.



Then
|Ix|[* =2

xT Ax > 2v'D
x"pJx=p- (D> _x:)* <p-(1+VD)* < 4pD

and
xT(A —pJ)x

> VD —2pD
|||

|A=pJ|| =

O

Thus, for p < %" we have with high probability ||4 — p.J|| > Q ( logn )

" loglogn



