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Summary of Lecture 6

In which we study the spectrum of random graphs.

In past lectures we used the fact that, for every p(n) > logn
n , there is a high probability that if

we sample G ∼ Gn,p(n) and let A be its adjacency matrix, we have ||A−pJ || ≤ O(
√
p(n) · n).

In particular, there is a high probability that ||A−J/2|| ≤ O(
√
n) when A is the adjacency

matrix of a graph sampled from Gn, 1
2
.

Today we will prove a slightly weaker result, and give an overview of the proofs of the
stronger results.

We will use the following basic facts from linear algebra. Let M be a real symmetric matrix:
then M has real eigenvalues, and let us call them λ1, . . . , λn so that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|.
By definition, ||M || = |λ1|. We have

1.
∑

iMii =
∑

i λi, and this quantity is called the trace of the matrix.

2. The eigenvalues of Mk are λk1, · · ·λkn

From the above two facts we have that, if k is even,

∑
i

(Mk)ii =
∑
i

λki =
∑
i

|λi|k

and so
||M ||k ≤

∑
i

(Mk)ii ≤ n · ||M ||k

If we choose k = lnn, we have

||M || ≤

(∑
i

(Mk)ii

) 1
k

≤ e · ||M ||

Thus we can approximate the spectral norm of a matrix by a computation of the trace of
a power of the matrix. If M is a random matrix, then computing E

∑
i(M

k)ii will give us
high-probability upper bounds to the spectral norm.

Let A be the adjacency matrix of a Gn,1/2 random graph; we let M be the random matrix
M := 2·(A−EA). We see that M is such that the diagonal entries are zero, all other entries
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are equally likely to be +1 or −1, and, other than satisfying the constraints Mij = Mji, all
entries are mutually independent.

We first notice that, by symmetry

E
∑
i

(Mk)ii = n · E(Mk)1,1

and by definition of matrix product and by linearity of expectation we have

E(Mk)1,1 =
∑

a1,...,ak−1∈V
EM1,a1 ·Ma1,a2 · · ·Mak−2,ak−1

·Mak−1,1

For each entry (a, b), we have that EM t
a,b = 0 if t is odd and EM t

a,b = 1 if t is even, so the
expressions whose average we want to compute above have average zero is there is a {a, b}
that occurs an odd number of times in the sequence {1, a1}, . . . , {ak−1, 1}, and the average
is one if all pairs occur an even number of times in the sequence.

Thus, E(Mk)1,1 is equal to the number of sequences 1, a1, . . . , ak−1, 1 such that, in the
sequence {1, a1}, . . . , {ak−1, 1}, each pair appears an even number of times.

We prove that such number is at most 2k · kk/2 · nk/2 by showing how to represent each
sequence using at most k + k

2 log k + k
2 log n in the following way: each element ai is rep-

resented either as (0, ai), which takes 1 + log n bits, if ai appears for the first time in the
sequence at location i, and as (0, j) otherwise, where j < i is such that ai = aj , which
requires 1 + log k bits. Using the fact that the sequence can contain at most k/2 distinct
pairs and hence at most k/2 distinct vertices (not counting the start) we get the bound.

This means that

E
∑
i

(Mk)ii ≤ 2k · kk/2 · n1+k/2

If we take k = lg n we have

P[||M || > t] = P[||M ||k > tk] ≤ E
∑

i(M
k)ii

tk
≤

(
2e
√
nk

t

)k

And so with high probability ||M || ≤ 4e
√
n lnn.

A more careful counting shows that the number of sequences is actually at most 2O(k)nk/2,
leading to the conclusion that ||M || ≤ O(

√
n) with high probability. We can understand the

set of sequences that we want to count in the following way: a sequence 1, a1, . . . , ak−1, 1
defines a graph over the vertices {1, a1, . . . , ak−1, 1} with edges {{1, a1}, . . . , {ak−1, 1}}.
Because of repetitions, we have at most k/2 edges, and hence at most 1 + k/2 vertices. In
our previous counting argument, we upper bounded the number of sequences with ` distinct
vertices (not counting the start vertex 1) as

(
k
`

)
·kk−` ·n`, which increases with ` and maxes

out at ` = k/2, thus it is interesting to see, as a first step toward a better proof, if the
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count can be improved in the ` = k/2. In this case, the graph is a tree, which is visited in
a depth-first search order. This means that, at every step in the sequence, we either see a
new vertex or we backtrack in our depth-first search, and we only need to spend one bit to
represent the latter even, leading to a much better 2k · nk/2 bound. Obtaining a 2O(k)nk/2

bound for all sequences is much harder and we will not attempt to do so.

Let us briefly review how to generalize the analysis to Gn,p for p < 1/2. In this case we will
look at

M := A− EA = A− pJ + pI

and we see that M is symmetric, it has zeroes on the diagonals, and the off-diagonal entries
satisfy

EMi,j = 0

EM2
i,j = p− p2 ≤ p

EMk
i,j ≤ p ∀k > 2

As before

E trace(Mk) = nE(Mk)1,1

and

E(Mk)1,1 =
∑

a1,...,ak−1∈V
EM1,a1 ·Ma1,a2 · · ·Mak−2,ak−1

·Mak−1,1

Now the expectation on the right-hand side is zero if there is a pair that occurs only
once in the sequence. Otherwise, it is p` where ` is the number of distinct pairs in the
sequence. The contribution to the weighted sum of sequences with k/2 distinct “edges” is
thus 2O(k)pk/2nk/2. When p > logn

n , this is the dominant term, and the whole weighted sum

is at most 2O(k)pk/2nk/2, leading to a high probability bound ||M || ≤ O(
√
pn).

Unfortunately, for p = o
(
logn
n

)
we do not have the high probability bound ||M || ≤ O(

√
pn).

To see why not, first observe that, for every p > 1/n there is a high probability that the

largest degree in the graph is Ω
(

logn
log logn

)
. Furthermore, if a graph has a vertex of large

degree, then ||A− pJ || will have large spectral norm.

Lemma 1 Let G be a graph, A its adjacency matrix, and suppose that G has a vertex v of
degree D ≥ 1. Then, for every p, we have

||A− pJ || ≥
√
D − 2pD

Proof: Let u1, . . . , uD be the D neighbors of v. Consider the vector x defined as xv = 1,
xui = 1/

√
D for i = 1, . . . , D, and xz = 0 for all other vertices z.
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Then
||x||2 = 2

xTAx ≥ 2
√
D

xT pJx = p · (
∑
z

xz)
2 ≤ p · (1 +

√
D)2 ≤ 4pD

and

||A− pJ || ≥ xT (A− pJ)x

||x||2
≥
√
D − 2pD

�

Thus, for p < logn
n , we have with high probability ||A− pJ || ≥ Ω

(√
logn

log logn

)
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