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Lecture 6

In which we study the spectrum of random graphs.

1 Overview

When attempting to find in polynomial time an upper bound certificate on the max cut
and maximum independent set of a graph, we have used the following property.

Proposition 1 If G ∼ Gn, 1
2
, then with high probability ‖A − E(A)‖ ≤ O(

√
n), where ‖ · ‖

is the spectral norm. Generally, if G ∼ Gn,p and p > logn
n then w.h.p.

‖A− E(A)‖ ≤ O(
√
np).

Today we will prove how to obtain the bound in Proposition 1 with an extra term of log n,
as well as show an outline of the method of finding the bound in Proposition 1. We will
also show how when p is small this bound breaks down, namely how when p = Θ( 1

n),

‖A− E(A)‖ ≥ Ω

(√
log n

log logn

)
.

2 Introducing the Trace

Henceforth Mk
ij signifies (Mk)ij . Take M symmetric and real. All eigenvalues of this matrix

are real, and we can enumerate them λ1, λ2, . . . , λn such that |λ1| ≥ |λ2| ≥ . . . ≥ |λn|.

Definition 1 The trace Tr(A) is defined to be Tr(A) =
∑n

i=1Aii where A is an n × n
matrix.

Moreover we know that

Theorem 2 Tr(A) =
∑n

1=1 λi.
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If we take k large and even, the eigenvalues of Mk are |λ1|k ≥ |λ2|k ≥ . . . ≥ |λn|k. Therefore
we have ∑

i

Mk
ii = Tr(Mk) =

∑
i

|λi|k ≥ |λ1|k = ‖M‖k.

Moreover we have

Tr(Mk)
1
k =

(∑
i

|λi|k
) 1

k

≤ n
1
k |λ1| = n

1
k ‖M‖.

This gives us an estimation of the norm, ‖M‖ ≤ (
∑

iM
k
ii)

1
k ≤ n

1
k ‖M‖, which for k > log n

gives a constant factor approximation of ‖M‖.

3 Using the Trace to Bound the Spectral Norm

Assume that G ∼ Gn, 1
2

and A is the adjacency matrix of G. We will prove the following.

Theorem 3 E
G∼G

n, 12

(Tr((A − E(A))k)) is bounded above by 2O(k)n1+k/2kk/2. If k > log n,

by taking the kth root we achieve a bound of O(
√
n log n) on ‖A− E(A)‖.

3.1 Expected Value of Matrix Entries

First, we examine the matrix M = 2A − 2E(A). We have Mii = 0 and Mij ∈ {±1} with
equal probability of each when i 6= j. Moreover Mij = Mji. If i 6= j,E(Mk

ij) = 0 if k is odd

and E(Mk
ij) = 1 for k even.

E(
∑

iM
k
ii) = nE(Mk

11) by the linearity of expectation and symmetry between the entries.
We evalute Mk

11.

Mk
11 =

∑
{i1,...,ik−1}

M1i1Mi1i2 · · ·Mik−1,1

where i1, . . . ik−1 represents the intermediate steps on a “path” between vertices that starts
at 1 and returns to 1. For example, M2

11 =
∑
M1iMi1. Note that we can repeat edges in

these paths. By the linearity of expectation

E(Mk
11) =

∑
{i1,...,ik−1}

E(M1i1Mi1i2 · · ·Mik−1,1
).

If any pair {i, j} occurs ` times in the sequence of pairs {1, i1}, {i1, i2}, . . . , {ik−1, 1}, where
` is odd, then as the value of this term is independent from all other terms and EM `

ij = 0 for
odd `, then E(M1i1Mi1i2 · · ·Mik−11) = 0. If all pairs occur an even number of times, their
product’s expectation is 1. Therefore E(Mk

11) is the number of sequences i1, . . . , ik−1 ∈ V k−1

such that, in the sequence of pairs {1, i1}, {i1, i2}, . . . , {ik−1, 1}, each pair occurs an even
number of times.
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3.2 Encoding argument

In order to give an upper bound on the number of such sequences, we will show how to
encode a sequence where there are m distinct edges. In the sequence i1, . . . ik−1, the element
ij is represented either as (0, ij), which takes 1 + log n bits, if iji appears for the first time
in the sequence at location j, and as (0, `) otherwise, where ` < j is such that i` = ij , which
requires 1 + log k bits. Notice that, if ij occurs for the first time at location j, then the pair
{ij−1, ij} also occurs for the first time at the location j−1 and j. Thus the number of times
that we encounter a vertex for the first time is at most the number of distinct edges. If we
have t distinct vertices (other than vertex 1), then we are using k + t log n + (k − t) log k;
for k < n, this value increases with t, but we have t ≤ m ≤ k/2 (because every edge has
to appear an even number of times and so there can be at most k/2 distinct edges. This
means that we use at most k + k

2 log n+ k
2 log k bits in the encoding.

The number of strings that can be encoded using at most L bits is 2L+1. If we assume

k < n, we have the bound E(Mk
11) ≤ k

k
2n

k
2 2k+1, meaning

Tr(M) = nE(Mk
11) ≤ n1+ k

2 2k+1k
k
2 .

Therefore using suitable k and t we achieve our bound on ‖M‖. For example, choose
k = log n and t = 10

√
n
√

log n. We use Markov’s inequality to obtain

P(‖M‖ > t) = P(‖M‖k > tk) ≤ E ‖M‖k

tk
≤

(
2n

1
k
√
n
√
k

t

)k

≤ e−Ω(logn) → 0.

4 Tightening the Bound

To obtain the sharper bound of O(
√
n), we need to count the number of pairs more sharply

and remove the k
k
2 term, namely improve the way we talk about repetitions. Here we give

an outline for how to find a tighter bound.

The worst case in the above analysis is when the number of distinct vertices (not counting
vertex 1) is maximal, which is k/2. In that case, the number of distinct “edges” {ij , ij+1}
is k/2, and they must form a connected graph over 1 + k/2 vertices, that is, they have to
form a tree. Furthermore, each edges is repeated exactly twice in the closed walk, otherwise
we would not have enough distinct edges to connect 1 + k/2 distinct vertices.

If the pairs form a tree, then the only way we can have closed walk in which every edge is
repeated twice is that the closed walk is a depth-first visit of the tree. In this case, we can
improve our encoding in the following way. In a depth-first visit of a tree only two events
are possible at each step: either we discover a new vertex, or we backtrack on the edge
between the current node and the parent node. Thus we only need to pay 1 + log n bits
to encode a new node in the sequence and 1 bit to encode an already seen node, and we

obtain a bound of 2
k
2

+ k
2

logn+ k
2 = 2kn

k
2 . By taking the kth root we obtain a bound on ‖M‖

of O(
√
n).
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5 Generalizing to any p

Now assume G ∼ Gn,p and A is the adjacency matrix of G. We also assume p < 1
2 . We

define
M = A− E(A).

In this matrix Mii = 0 and if i 6= j,Mi,j = 1− p with probability p and −p with probability
1− p. Therefore E(Mij) = 0,E(M2

ij) = p− p2 ≤ p. In fact, E(Mk
ij) ≤ p for all k ≥ 1.

From this we see we need to sum over sequences such that the multiset has each pair
occuring at least two times, as if any pair occurs once, the expectation is 0.

Therefore the bound is

E(Mk
11) ≤

∑
i1,...ik−1

p`

where ` is the number of distinct pairs and the sum is taken over multisets where each pair
occurs at least twice. For large `, the number of sequences where each pair occurs at least
twice with ` distinct pairs is approximately 2O(`)n`. This would give us

∑
i1,...ik−1

p` =
∑
`

p`2O(`)n` ≤ O(p
k
2 2O(k)n

k
2 )

so the bound on ‖M‖ is O(
√
np). However, the bound on the number of sequences with

` distict pairs breaks down when ` is much smaller than k. In a full proof much more
complicated calculations must be done.

6 Problems with sparse graphs

Theorem 4 If p = Θ( 1
n) , then ‖A− E(A)‖ ≥ Ω

(√
logn

log logn

)
w.h.p.

This breaks down the nice bound we obtained in section 5. This follows from the irregularity
of sparse graphs. There will be isolated vertices and vertices with degree much higher than
average.

Lemma 1 If p = Θ( 1
n) then w.h.p. the highest degree vertex of G is of order Θ

(
logn

log logn

)
.

Proposition 5 If G has a node of degree ≥ d, then, for every p < 1
4
√
d
, λmax(A − pJ) ≥

Ω(
√
d). This implies that ∀0 < p < . 1

4
√
d
, ‖A− pJ‖ ≥ Ω(

√
d).

Proof: We have

λmax(A− pJ) = max
x

xT (A− pJ)x

‖x‖2

where the maximum is taken over all nonzero vectors x. Call v a node of degree ≥ d and
call d of its neighbors u1, . . . , ud.
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Consider the vector x such that xv = 1, xui = 1√
d

and xw = 0 for other vertices w. We have

xTAx ≥ 2
√
d

xT pJx = p ·
(∑

xi

)2
= p · (1 +

√
d)2 ≤ 4pd

||x||2 = 2

Therefore if p ≤ 1
4
√
d
,

xT (A− pJ)x

‖x‖2
≥
√
d− 1

2

√
d = Ω(

√
d)

yielding the desired bound.

�

Theorem 4 proceeds immediately from Proposition 5 and Lemma 1.
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