Scribed by Haaris Khan Last modified 10/3/2017

Lecture 5

In which we study the SDP relaxation of Max Cut in random graphs.

1 Quick Review of Chernoff Bounds

Suppose $X_1, ..., X_n$ are mutually independent random variables with values 0, 1. Let $X := \sum_{i=1}^{n} X_i$. The Chernoff Bounds claim the following:

1. $\forall \epsilon \text{ such that } 0 \leq \epsilon \leq 1$,

$$\mathbb{P}(|X - \mathbb{E}[X]|) > \epsilon \cdot \mathbb{E}[X]) \le \exp(\Omega(\epsilon^2 \cdot \mathbb{E}[X]))$$

2. $\forall t > 1$,

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge t \cdot \mathbb{E}[X]) \le \exp(-\Omega((t\log(t)) \cdot \mathbb{E}[X]))$$

3. When we do not know $\mathbb{E}[X]$, we can bound as follows:

 $\mathbb{P}(|X - \mathbb{E}[X]| \ge \epsilon \cdot n) \le \exp(-\Omega(\epsilon^2 \cdot n))$

2 Cutting a Near-Optimal Number of Edges in $G_{n,p}$ Via SDP Rounding

Consider $G_{n,p}$ where $p > \frac{\log(n)}{n}$. We show that with 1 - o(1) probability, the max-degree will be O(d)

- Fix v
- For some constant c,

 \mathbb{P}

$$\begin{aligned} (\text{v has degree} > c \cdot d) &= \mathbb{P}(|deg(v) - \mathbb{E}[v]| > (c-1) \mathbb{E}[deg(v)]) \\ &\leq \exp(-\Omega((c-1)\log(c-1) \cdot d)) \text{ (by Chernoff Bounds)} \\ &\leq \exp(-\Omega((c-1)\log(c-1) \cdot \log(n))) \\ &\leq \frac{1}{n^2}, \text{ for some choice of constant c} \end{aligned}$$

So $\mathbb{P}(\exists v \text{ with degree } > c \cdot d) \le n \cdot \frac{1}{n^2} \le \frac{1}{n}$

Next, we compute the number of vertices that participate in a triangle. Recall that degree d can be bounded by $o(n^{\frac{1}{3}})$

 $\mathbb{E}[\text{number vertices in triangles}] = n \cdot \mathbb{P}(\text{v participates in a triangle})$

If a vertex participates in a triangle, there are $\binom{n-1}{2}$ ways of choosing the other two vertices that participate with v in the triangle.

So the expected number of vertices in triangles can be bounded by

$$\mathbb{E}[\text{number vertices in triangles}] \le n \cdot p^3 \cdot \binom{n-1}{2}$$
$$\le n^3 \cdot p^3$$
$$= o(n) \text{ if } p = o\left(\frac{1}{n^{\frac{2}{3}}}\right), \ d = o(n^{\frac{1}{3}})$$

So with o(1) probability,

- All vertices have degree O(d)
- o(n) vertices participate in triangles.

3 Eigenvalue Computations and SDP

Problems like finding the largest / smallest eigenvalue can be solved using SDP Let M be symmetric, λ_{\max} be the largest eigenvalue of M: $\lambda_{\max} = \max_x \frac{\boldsymbol{x}^T M \boldsymbol{x}}{\|\boldsymbol{x}\|^2}$ We can formulate this as Quadratic Programming:

$$\max_{i,j} \sum_{i,j} M_{i,j} x_i y_j \text{s.t.}$$
$$\sum_i x_i^2 = 1$$

We showed previously that we can relax a Quadratic Program to SDP:

$$\begin{split} \max_{i,j} & \sum_{i,j} M_{i,j} \langle \boldsymbol{x_i}, \boldsymbol{x_j} \rangle \text{s.t} \\ & \sum_i \|\boldsymbol{x_i}\|^2 = 1 \end{split}$$

In fact, it happens that these two are equivalent. To show this, we must show that a vector solution x of SDP can hold as a solution to the QP and vice versa.

Proving x for QP is valid for SDP: Trivial. Any solution x to our Quadratic Program must be a solution for our SDP since it is a relaxation of the problem; then the optimum of our QP must be less than or equal to the optimum of our SDP

Proving x for SDP is valid for QP: Consider x := vector solution of cost c. We note that our SDP can be transformed into an unconstrained optimization problem as follows:

$$\max_{i,j} \quad \frac{\sum_{i,j} M_{i,j} \langle \boldsymbol{x_i}, \boldsymbol{x_j} \rangle}{\sum_i \|\boldsymbol{x_i}\|^2}$$

The cost c can be defined as the value of our solution:

$$c = \frac{\sum_{i,j} M_{i,j} \sum_{k} \boldsymbol{x_{k}}^{i} \boldsymbol{x_{k}}^{j}}{\sum_{i} \sum_{k} \|\boldsymbol{x_{k}}^{i}\|^{2}}$$
$$\leq \max_{k} \frac{\sum_{i,j} M_{i,j} \boldsymbol{x_{k}}^{i} \boldsymbol{x_{k}}^{j}}{\sum_{i} \|\boldsymbol{x_{k}}^{i}\|^{2}}$$

We get a one-dimensional solution when we use the k^{th} element of x, and wish to find the k that maximizes this.

We use the following inequality:

$$\frac{a_1+\ldots+a_m}{b_1+\ldots+b_m} \leq \max_{k=1,\ldots,m} \frac{a_k}{b_k}, b_k > 0$$

Proof:

$$\sum_{i} a_{i} = \sum_{i} b_{i} \cdot \frac{a_{i}}{b_{i}} \le \sum_{i} b_{i} \cdot \max_{k} \frac{a_{k}}{b_{k}}$$
$$= \max_{k} \frac{a_{k}}{b_{k}} \cdot \sum_{i} b_{i}$$

4 SDP Max-Cut: Spectral Norm as a SDP Certificate

Consider the SDP relaxation of Max-Cut on Graph G:

max
$$\sum_{(i,j)\in E} \frac{1}{4} \|\boldsymbol{X}_{i} - \boldsymbol{X}_{j}\|^{2}$$
s.t.
$$\forall v \in V, \|\boldsymbol{X}_{v}^{2}\| = 1$$

Let the optimum value for this SDP be SDPMaxCut(G). It's obvious that $MaxCut(G) \leq SDPMaxCut(G)$. Under our constraints, we can rewrite our SDP as

$$\sum_{(i,j)\in E}\frac{1}{2}-\frac{1}{2}\langle \pmb{X_i},\pmb{X_j}\rangle$$

So our new optimization problem is

$$\max \qquad \frac{|E|}{2} - \sum_{(i,j)\in E} \frac{1}{2} \langle \mathbf{X}_i, \mathbf{X}_j \rangle$$

s.t.
$$\forall i \in V, \|\mathbf{X}_i\|^2 = 1$$

We can relax our constraint to the following: $\forall i \in V, \sum_i ||\mathbf{X}_i||^2 = n$. Relaxing our constraint will yield an optimization problem with a solution less than the stricter constraint (call this SDP'MaxCut(G)):

$$\begin{split} \max &\quad \frac{|E|}{2} - \sum_{(i,j) \in E} \frac{1}{2} \langle \boldsymbol{X_i}, \boldsymbol{X_j} \rangle \\ \text{s.t.} &\quad \\ &\quad \sum_{v} \|\boldsymbol{X_v}\|^2 = n \end{split}$$

Clearly, we have the following inequalities: $MaxCut(G) \leq SDPMaxCut(G) \leq SDP'MaxCut(G)$. We can rewrite SDP'MaxCut(G) as

$$\max \quad \frac{|E|}{2} + \frac{n}{4} \cdot \sum_{i,j} \frac{-A_{i,j} \langle \mathbf{X}_i, \mathbf{X}_j \rangle}{\sum_i \|\mathbf{X}_i\|^2}$$
$$\sum_v \|\mathbf{X}_v\|^2 = n$$

Note that our objective function computes the largest eigenvalue of -A:

$$=\frac{|E|}{2}+\frac{n}{4}\cdot\lambda_{\max}(-A)$$

For every graph $G_{n,p}$ with $0 \le p \le 1$,

$$MaxCut(G) \le SDPMaxCut(G) \le \frac{|E|}{2} + \frac{n}{4} \cdot \lambda_{\max}(-A)$$

$$\leq \frac{|E|}{2} + \frac{n}{4} \cdot \lambda_{\max}(pJ - A)$$
$$\leq \frac{|E|}{2} + \frac{n}{4} \cdot \|pJ - A\|$$

Recall from previous lectures that for $p > \frac{\log(n)}{n}$, the adjacency matrix of A sampled from $G_{n,p}$ has $\|pJ - A\| \le O(\sqrt{np})$ with high probability. This implies that $SDPMaxCut(G) \le \frac{|E|}{2} + O(n \cdot \sqrt{d})$. Semantically, this means that SDPMaxCut(G) computes in poly-time a correct upper-bound of MaxCut(G).

5 Trace and Eigenvalues

Suppose matrix M is symmetric with eigenvalues $\lambda_1 \dots \lambda_n$. The following are true:

- M^k eigenvalues are $\lambda_1^k \dots \lambda_n^k$
- $trace(M) := \sum_{i,i} M_{i,i}$; $trace(M) = \sum_i \lambda_i$

Then, for M^{2k} , $trace(M^{2k}) = \lambda_1^{2k} + \ldots + \lambda_n^{2k}$.

$$(\max_{i} |\lambda_i|)^{2k} \le trace(M^{2k}) \le n \cdot (\max_{i} |\lambda_i|)^{2k}$$

Also,

$$\|M\| \le (trace(M^{2k})^{\frac{1}{2k}} \le n^{\frac{1}{2k}} \cdot \|M\|$$

 $A_{i,j}$ is defined as the number of expected paths from *i* to *j* that take *k* steps (not necessarily simple paths in a graph)

 $=\sum_{\text{paths from i to j}} M_{i,a_1} \dots M_{a_n,j}$

Our goal with this is to compute the eigenvalues λ . Since traces relates the sum of the diagonal and the sum of eigenvalues for symmetric M, we can use this to provide an upper bound for symmetric M.