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Lecture 5

In which we study the SDP relaxation of Max Cut in random graphs.

1 Quick Review of Chernoff Bounds

Suppose X1, ..., Xn are mutually independent random variables with values 0, 1.
Let X :=

∑n
i=1Xi. The Chernoff Bounds claim the following:

1. ∀ ε such that 0 ≤ ε ≤ 1,

P(|X − E[X]|) > ε · E[X]) ≤ exp(Ω(ε2 · E[X]))

2. ∀ t > 1,

P(|X − E[X]| ≥ t · E[X]) ≤ exp(−Ω((t log(t)) · E[X]))

3. When we do not know E[X], we can bound as follows:

P(|X − E[X]| ≥ ε · n) ≤ exp(−Ω(ε2 · n))

2 Cutting a Near-Optimal Number of Edges in Gn,p Via SDP
Rounding

Consider Gn,p where p > log(n)
n . We show that with 1 − o(1) probability, the max-degree

will be O(d)

• Fix v

• For some constant c,

P(v has degree > c · d) = P(|deg(v)− E[v]| > (c− 1)E[deg(v)])

≤ exp(−Ω((c− 1) log(c− 1) · d)) (by Chernoff Bounds)

≤ exp(−Ω((c− 1) log(c− 1) · log(n))

≤ 1

n2
, for some choice of constant c
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So P(∃ v with degree > c · d) ≤ n · 1
n2 ≤ 1

n

Next, we compute the number of vertices that participate in a triangle. Recall that degree
d can be bounded by o(n

1
3 )

E[number vertices in triangles] = n · P(v participates in a triangle)

If a vertex participates in a triangle, there are
(
n−1
2

)
ways of choosing the other two vertices

that participate with v in the triangle.
So the expected number of vertices in triangles can be bounded by

E[number vertices in triangles] ≤ n · p3 ·
(
n− 1

2

)
≤ n3 · p3

= o(n) if p = o

(
1

n
2
3

)
, d = o(n

1
3 )

So with o(1) probability,

• All vertices have degree O(d)

• o(n) vertices participate in triangles.

3 Eigenvalue Computations and SDP

Problems like finding the largest / smallest eigenvalue can be solved using SDP

Let M be symmetric, λmax be the largest eigenvalue of M: λmax = maxx
xTMx
‖x‖2 We can

formulate this as Quadratic Programming:

max
i,j

∑
i,j

Mi,jxiyjs.t.∑
i

x2i = 1

We showed previously that we can relax a Quadratic Program to SDP:

max
i,j

∑
i,j

Mi,j〈xi,xj〉s.t.∑
i

‖xi‖2 = 1
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In fact, it happens that these two are equivalent. To show this, we must show that a vector
solution x of SDP can hold as a solution to the QP and vice versa.

Proving x for QP is valid for SDP: Trivial. Any solution x to our Quadratic Program must
be a solution for our SDP since it is a relaxation of the problem; then the optimum of our
QP must be less than or equal to the optimum of our SDP

Proving x for SDP is valid for QP: Consider x := vector solution of cost c. We note that
our SDP can be transformed into an unconstrained optimization problem as follows:

max
i,j

∑
i,j Mi,j〈xi,xj〉∑

i ‖xi‖2

The cost c can be defined as the value of our solution:

c =

∑
i,j Mi,j

∑
k xk

ixk
j∑

i

∑
k ‖xk

i|2

≤ max
k

∑
i,j Mi,jxk

ixk
j∑

i ‖xk
i‖2

We get a one-dimensional solution when we use the kth element of x, and wish to find the
k that maximizes this.

We use the following inequality:

a1 + ...+ am
b1 + ...+ bm

≤ max
k=1,...,m

ak
bk
, bk > 0

Proof: ∑
i

ai =
∑
i

bi ·
ai
bi
≤
∑
i

bi ·max
k

ak
bk

= max
k

ak
bk
·
∑
i

bi

4 SDP Max-Cut: Spectral Norm as a SDP Certificate

Consider the SDP relaxation of Max-Cut on Graph G:

max
∑

(i,j)∈E

1

4
‖Xi −Xj‖2

s.t.

∀v ∈ V, ‖Xv
2‖ = 1
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Let the optimum value for this SDP be SDPMaxCut(G). It’s obvious that MaxCut(G) ≤
SDPMaxCut(G). Under our constraints, we can rewrite our SDP as

∑
(i,j)∈E

1

2
− 1

2
〈Xi,Xj〉

So our new optimization problem is

max
|E|
2
−
∑

(i,j)∈E

1

2
〈Xi,Xj〉

s.t.

∀i ∈ V, ‖Xi‖2 = 1

We can relax our constraint to the following: ∀i ∈ V,
∑

i ‖Xi‖2 = n. Relaxing our constraint
will yield an optimization problem with a solution less than the stricter constraint (call this
SDP ′MaxCut(G)):

max
|E|
2
−
∑

(i,j)∈E

1

2
〈Xi,Xj〉

s.t. ∑
v

‖Xv‖2 = n

Clearly, we have the following inequalities: MaxCut(G) ≤ SDPMaxCut(G) ≤ SDP ′MaxCut(G).
We can rewrite SDP ′MaxCut(G) as

max
|E|
2

+
n

4
·
∑
i,j

−Ai,j〈Xi,Xj〉∑
i ‖Xi‖2∑

v

‖Xv‖2 = n

Note that our objective function computes the largest eigenvalue of −A:

=
|E|
2

+
n

4
· λmax(−A)

For every graph Gn,p with 0 ≤ p ≤ 1,

MaxCut(G) ≤ SDPMaxCut(G) ≤ |E|
2

+
n

4
· λmax(−A)
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≤ |E|
2

+
n

4
· λmax(pJ −A)

≤ |E|
2

+
n

4
· ‖pJ −A‖

Recall from previous lectures that for p > log(n)
n , the adjacency matrix of A sampled from

Gn,p has ‖pJ −A‖ ≤ O(
√
np) with high probability. This implies that SDPMaxCut(G) ≤

|E|
2 + O(n ·

√
d). Semantically, this means that SDPMaxCut(G) computes in poly-time a

correct upper-bound of MaxCut(G).

5 Trace and Eigenvalues

Suppose matrix M is symmetric with eigenvalues λ1 . . . λn. The following are true:

• Mk eigenvalues are λk1 . . . λ
k
n

• trace(M) :=
∑

i,iMi,i ; trace(M) =
∑

i λi

Then, for M2k, trace(M2k) = λ2k1 + . . .+ λ2kn .

(max
i
|λi|)2k ≤ trace(M2k) ≤ n · (max

i
|λi|)2k

Also,

‖M‖ ≤ (trace(M2k)
1
2k ≤ n

1
2k · ‖M‖

Ai,j is defined as the number of expected paths from i to j that take k steps (not necessarily
simple paths in a graph)

=
∑

paths from i to jMi,a1 . . .Man,j

Our goal with this is to compute the eigenvalues λ. Since traces relates the sum of the
diagonal and the sum of eigenvalues for symmetric M , we can use this to provide an upper
bound for symmetric M .
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