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Summary of Lecture 5

In which we study the SDP relaxation of Max Cut in random graphs.

1 A Quick Review of Chernoff Bounds

If X1, . . . , Xn are mutually independent random variables taking values in {0, 1}, and X :=∑n
i=1Xi is their sum, the following three versions of the Chernoff bounds hold:

rl∀0 ≤ ε ≤ 1. P[|X − EX| ≥ ε · EX] ≤ e−Ω(ε2·EX)

∀0 ≤ ε ≤ 1. P[|X − EX| ≥ ε · n] ≤ e−Ω(ε2·n)

∀c > 1. P[|X − EX| ≥ c · EX] ≤ e−Ω((c log c)·EX)

2 Cutting a Near-Optimal Number of Edges in Gn,p Via SDP
Rounding

Consider the Gn,p distribution where the average degree d = p · (n− 1) satisfies log n ≤ d ≤
o(n1/3).

First we argue, using the d ≥ log n assumption, that there is a constant c > 0 such that
with high probability every node has degree ≤ cd. Indeed, the probability that there exists
a node of degree > cd is at most n times the probability that a fixed node v has degree
more than cd. If we apply the Chernoff of the third type above to the number of neighbors
of v we have

P[∃ a node of degree > cd] ≤ n · e−Ω(d·(c−1) log(c−1)) ≤ n · e−2d ≤ 1

n

which is valid for a sufficiently large choice of c.

Next we compute the number of nodes that participate in a triangle. A node has prob-
ability at most p2n2 of participating in a triangle, and so the expected number of nodes
participating in triangles is at most p2n3 = o(n). Thus, by using Markov’s inequality, there
is a 1− o(1) probability that at most, say, n

10c nodes participate in triangles. (Now we have

used the assumption that d = o(n1/3).
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Overall, we have a 1− o(1) probability that every node has degree ≤ cd, and that at most
dn/10 edges are incident on nodes that participate in a triangle.

Now, construct an SDP solution as we did last time for all the nodes that do not participate
in triangles, and make the nodes that participate in triangles orthogonal to all other nodes.

If we round this solution with a random hyperplane, every edge has probability 1
2 + 1

O(
√
d)

of

being cut, except that ≤ dn/10 edges incident on nodes that participate in triangles, which
have probability 1/2 of being cut. Overall, we cut on average |E|/2 + Ω(

√
dn) edges, which

the asymptotically tight bound that we had achieved with a greedy algorithm, but that now
we are able to achieve via a much more robust algorithm, that performs non-trivially well
on all graphs.

3 A Quick Review of Eigenvalue Computations as SDPs

Now we have shown that the |E|/2 + Ω(
√
dn) lower bound on the probable optimum can

be achieved constructively by reasoning about the SDP, we want to show that the |E|/2 +
O(
√
dn) upper bound certificate that we derived from spectral methods can also be obtained

through the SDP.

As a starting point, we will show that computing the largest eigenvalue of a symmetric
matrix can be formulated as an SDP. Recall that if M is a symmetric matrix then its
largest eigenvalue is the solution of the optimization problem

max
x1,...,xn

∑
i,jMi,jxixi∑

i x
2
i

(1)

which we can also write as the homogeneous quadratic optimization problem

max
∑

i,jMi,jxixi

s.t. ∑
i x

2
i = 1

We notes in past lectures that once we have a quadratic optimization problem we can always
relax it in a automatic way to a SDP. If we do that, we get

max
∑

i,jMi,j〈xi,xi〉
s.t. ∑

i ||xi||2 = 1

which we can also write as

max
x1,...,xn

∑
i,jMi,j〈xi,xi〉∑

i ||xi||2
(2)
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Although this generally does not happen, we will show that in this case the SDP relaxation
is without loss, and the optimization problems (1) and (2) are actually equivalent.

One direction is trivial: every solution to (1) is also a solution to (2) and so the optimum
of (1) is smaller than or equal to the optimum of (2).

For the other direction, let c be the optimum of (2) and x1, . . . ,xn be an optimum solution.
We write xi,k for the k-th coordinate of the vector xi. Then

c =

∑
i,jMi,j〈xi,xi〉∑

i ||xi||2

=

∑
i,jMi,j

∑
k xi,k,xi,k∑

i

∑
k x

2
i,k

=

∑
k

(∑
i,jMi,jxi,k,xi,k

)
∑

k

(∑
i x

2
i,k

)
≤ max

k

∑
i,jMi,jxi,k,xi,k∑

i x
2
i,k

≤ max
x1,...,xn

∑
i,jMi,jxixi∑

i x
2
i

where the second-to-last step uses the inequality∑
k ak∑
k bk
≤ max

k

ak
bk

which is valid whenever the bk are positive, because we have∑
k

ak =
∑
k

bk ·
ak
bk
≤
(

max
i
·ai
bi

)
·
∑
k

bk

4 The Spectral Norm Certificate as a SDP Certificate

Let’s start from the SDP relaxation of Max Cut on a graph G

max
∑

(i,j)∈E

1

4
||xi − xj ||2

s.t.

||xi||2 ∀i ∈ V

We will refer to the value of the optimum as SDPMaxCut(G). Cleary we haveMaxCut(G) ≤
SDPMaxCut(G). The following is an equivalent formulation, because, under the con-
straints, 1

4 ||xi − xj ||2 = 1
2 −

1
2〈xi,xj〉.

3



max
|E|
2
−
∑

(i,j)∈E

1

2
〈xi,xj〉

s.t.

||xi||2 ∀i ∈ V

Now we relax the constraints ∀i ∈ V.||xi||2 = 1 to the single constraint
∑

i ||xi||2 = n so
that we get the new relaxation SDP ′MaxCut(G)

max
|E|
2
− 1

2

∑
(i,j)∈E

〈xi,xj〉

s.t. ∑
i∈V
||xi||2 = n

And we clearly have MaxCut(G) ≤ SDPMaxCut(G) ≤ SDP ′MaxCut(G). But we can
rewrite SDP ′MaxCut(G) as

|E|
2

+
n

4
·max

∑
i,j −Ai,j〈xi,xj〉∑

i∈V ||xi||2

And from what we have seen in the previous section, this is equivalent to

|E|
2

+
n

4
· λmax(−A)

where we use the notation λmax(M) to represent the largest eigenvalue of M .

Finally, for every p ≥ 0, we have

SDP ′MaxCut(G) =
|E|
2

+
n

4
· λmax(−A)

≤ |E|
2

+
n

4
· λmax(pJ −A)

≤ |E|
2

+
n

4
· λmax||pJ −A||

Now, we have claimed that, for p > logn
n , we that the adjacency matrix A of a graph

sampled from Gn,p satisfies with high probability ||pJ −A|| ≤ O(
√
np), and so we have that

with high probabilty we also have SDPMaxCut(G) ≤ |E|/2 +O(n ·
√
d), meaning that the

polynomial time computable upper bound to MaxCut(G) given by SDPMaxCut(G) has
a high probability of being the correct asymptotic bound.
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