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Lecture 5

In which we study the SDP relaxation of Max Cut in random graphs.

1 Quick Review of Chernoff Bounds

Suppose X1, ..., X,; are mutually independent random variables with values 0, 1.
Let X :=>"" ; X;. The Chernoff Bounds claim the following:

1. Vesuchthat 0 <e<1,
P(|X — E[X]]) > e-E[X]) < exp(Q(e? - E[X]))

2.Vt >1,
P(IX — E[X]| > ¢ - E[X]) < exp(—Q((t1og(t)) - E[X]))

3. When we do not know E[X], we can bound as follows:

P(|X — E[X]| > €-n) < exp(—Q(e - n))

2 Cutting a Near-Optimal Number of Edges in G, , Via SDP
Rounding

Consider Gy, ;, where p > %. We show that with 1 — o(1) probability, the max-degree
will be O(d)
o Fix v
e For some constant c,
P(v has degree > ¢ - d) = P(|deg(v) — E[v]| > (¢ — 1) E[deg(v)])
< exp(—Q((c—1)log(c — 1) - d)) (by Chernoff Bounds)
< exp(—Q((c — 1) log(c — 1) - log(n))

1 .
< —5, for some choice of constant c
n



So P(3 v with degree >c-d) <n- 2 <

1

n

Next, we compute the number of vertices that participate in a triangle. Recall that degree
d can be bounded by 0(n3)

E[number vertices in triangles] = n - P(v participates in a triangle)
If a vertex participates in a triangle, there are ("51) ways of choosing the other two vertices

that participate with v in the triangle.
So the expected number of vertices in triangles can be bounded by

. . . 3 n—1
E[number vertices in triangles] < n - p” - 5

So with o(1) probability,

o All vertices have degree O(d)

e o(n) vertices participate in triangles.

3 Eigenvalue Computations and SDP

Problems like finding the largest / smallest eigenvalue can be solved using SDP

Let M be symmetric, A\pax be the largest eigenvalue of M: Ap.x = max, % We can
formulate this as Quadratic Programming:

max ZMi,jxiij-t-
,J
>ar=

i

We showed previously that we can relax a Quadratic Program to SDP:

max E M” x;, a:J

Z s ]|* =



In fact, it happens that these two are equivalent. To show this, we must show that a vector
solution = of SDP can hold as a solution to the QP and vice versa.

Proving x for QP is valid for SDP: Trivial. Any solution z to our Quadratic Program must
be a solution for our SDP since it is a relaxation of the problem; then the optimum of our
QP must be less than or equal to the optimum of our SDP

Proving x for SDP is valid for QP: Consider = := vector solution of cost c. We note that
our SDP can be transformed into an unconstrained optimization problem as follows:

>ij Mij (@i, ;)
max

i.j > llzall?
The cost ¢ can be defined as the value of our solution:

L M Y
> 2 lew'|?
> Mi ez’

< max 2 13
k >l |l

We get a one-dimensional solution when we use the k** element of z, and wish to find the
k that maximizes this.

We use the following inequality:

al+ ... +am ag
el e = b >0
bi+ ...+ by, _k:rlf,a)fm bi b

ay
= max — - E b;
k bk - !
(2

Proof:

4 SDP Max-Cut: Spectral Norm as a SDP Certificate

Consider the SDP relaxation of Max-Cut on Graph G:

1 2
max Z 211X = X
(i,5)eE
S.t.
Vo eV, || X2 =1



Let the optimum value for this SDP be SDPMaxCut(G). It’s obvious that MazCut(G) <
SDPMaxCut(G). Under our constraints, we can rewrite our SDP as

1 1
- — (X, X;
PR L
J)EE
So our new optimization problem is
|E| 1
(i.j)eE
s.t.
VieV,|| X =

We can relax our constraint to the following: Vi € VY, || X;||?> = n. Relaxing our constraint
will yield an optimization problem with a solution less than the stricter constraint (call this
SDP'MaxCut(G)):

Clearly, we have the following inequalities: MazCut(G) < SDPMaxCut(G) < SDP'MazCut(G).
We can rewrite SDP'MazCut(G) as

|E| Z Ai j (X, Xj)

> 1 Xll?
Do IXol? =

Note that our objective function computes the largest eigenvalue of —A:

E n
= 7‘ 2‘ Z . )\max(_A)
For every graph G, , with 0 <p <1,

MaxCut(G) < SDPMaxCut(G) < “29‘ + % “ Amax(—A)



Bl n
< = " \max - A
<3 +4 Amax(pJ — A)

| |

Recall from previous lectures that for p > bg( ) , the adjacency matrix of A sampled from
Ghnp has |[pJ — A|| < O(y/np) with high probablhty. This implies that SDPMazCut(G) <

|—§‘ + O(n - V/d). Semantically, this means that SDPMaxCut(G) computes in poly-time a
correct upper-bound of MaxCut(G).

5 Trace and Eigenvalues

Suppose matrix M is symmetric with eigenvalues A; ... \,. The following are true:

o MP¥ eigenvalues are A} ... \F

o trace(M) =}, , M;; ; trace(M) =3, \;

Then, for M?¥ trace(M?) = X2k .. + X2k,

(max |/\i\)2k < trace(MQk) < n - (max |/\i\)2k
(A (A

Also,

IM]| < (trace(M?*)2% < na - | M|

A, ; is defined as the number of expected paths from i to j that take k steps (not necessarily
simple paths in a graph)

= Zpaths from i to j Miﬂl tet M(Imj

Our goal with this is to compute the eigenvalues A. Since traces relates the sum of the
diagonal and the sum of eigenvalues for symmetric M, we can use this to provide an upper
bound for symmetric M.
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