
U.C. Berkeley — CS294: Beyond Worst-Case Analysis Handout 4s
Luca Trevisan September 5, 2017

Summary of Lecture 4

In which we introduce semidefinite programming and apply it to Max Cut.

1 Semidefinite Programming

Recall that a matrix M ∈ Rn×n is positive semidefinite (abbreviated PSD and written
M � 0) if it is symmetric and all its eigenvalues are non-negative. We will use without
proof the following facts from linear algebra:

1. If M ∈ Rn×n is a symmetric matrix, then all the eigenvalues of M are real, and, if we
call λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues of M with repetition, we have

M =
∑
i

λiv
(i)(v(i))T

where the v(i) are orthonormal eigenvectors of the λi.

2. The smallest eigenvalue of M has the characterization

λ1 = min
y 6=0

yTMy

||y||2

and the optimization problem in the right-hand side is solvable up to arbitrarily good
accuracy

From part (2) above we have that M is PSD if and only if for every vector y we have
yTMy ≥ 0.

We will also use the following alternative characterization of PSD matrices

Lemma 1 A matrix M ∈ Rn×n is PSD if and only if there is a collection of vectors
x(1), . . . ,x(n) such that, for every i, j, we have Mi,j = 〈x(i),x(j)〉.

Proof: Suppose that M and x(1), . . . ,x(n) are such that Mi,j = 〈x(i),x(j)〉 for all i and j.
Then M is PSD because for every vector y we have

1

yTMy =
∑
i,j

yiyjMi,j =
∑
i,j

yiyj〈x(i),x(j)〉 =

∥∥∥∥∥∑
i

yix
(i)

∥∥∥∥∥
2

≥ 0

Conversely, if M is PSD and we write it as

M =
∑
k

λiv
(k)(v(k))T

we have
Mi,j =

∑
k

λkv
(k)
i v

(k)
j

and we see that we can define n vectors x(1), · · · ,x(n) by setting

xi
k :=

√
λk · v

(k)
i

and we do have the property that

Mi,j = 〈x(i),x(j)〉

�

With these characterizations in mind, we define a semidefinite program as an optimization
program in which we have n2 real variables Xi,j , with 1 ≤ i, j ≤ n, and we want to maximize,
or minimize, a linear function of the variables such that linear constraints over the variables
are satisifed (so far this is the same as a linear program) and subject to the additional
constraint that the matrix X is PSD. Thus, a typical semidefinite program (SDP) looks like

max
∑
i,j

Ci,jXi,j

s.t.∑
i,j

A
(1)
i,jXi,j ≤ b1

...∑
i,j

A
(m)
i,j Xi,j ≤ bm

X � 0

where the matrices C,A(1), . . . , A(m) and the scalars b1, . . . , bm are given, and the entries of
X are the variables that we are optimizing over.

If A and B are two matrices such that A � 0 and B � 0, and if a ≥ 0 is a scalar, then
it is easy to see that a · A � 0 and A + B � 0, by using the characterization that M � 0
iff yTMy ≥ 0 for every y. This means that the set of PSD matrices is a convex subset of
Rn×n, and that the above optimization problem is a convex problem.

2

Using the ellipsoid algorithm, one can solve in polynomial time (up to arbitrarily good
accuracy) any optimization problem in which one wants to optimize a linear function over
a convex feasible region, provided that one has a separation oracle for the feasible region,
that is, an algorithm that, given a point, checks whether it is feasible and, if not, constructs
an inequality that is satisfied by all feasible point but not satisfied by the given point. In
order to construct a separation oracle for a SDP, it is enough to solve the following problem:
given a matrix M , decide if it is PSD or not and, if not, construct an inequality that is
satisfied by the entries of all PSD matrices but that is not satisfied by M . In order to do
so, recall that the smallest eigenvalue of M is

min
y

yTMy

||y||2

and that the above minimization problem is solvable in polynomial time (up to arbitrarily
good accuracy). If the above optimization problem has a non-negative optimum, then M
is PSD. If it is a negative optimum y∗, then the matrix is not PSD, and the inequality∑

i,j

Xi,jy
∗
i y
∗
j ≥ 0

is satisfied for all PSD matrices X but fails for X := M . Thus we have a separation oracle
and we can solve SDPs in polynomial time up to arbitrarily good accuracy.

In light of our characterization of PSD matrices, SDPs have the following equivalent for-
mulation:

max
∑
i,j

Ci,j〈x(i),x(j)〉

s.t.∑
i,j

A
(1)
i,j 〈x

(i),x(j)〉 ≤ b1

...∑
i,j

A
(m)
i,j 〈x

(i),x(j)〉 ≤ bm

where our variables are vectors x(1), · · · ,x(n).

2 SDP Relaxation of Max Cut and Random Hyperplane
Rounding

The Max Cut problem in a given graph G = (V,E) has the following equivalent char-
acterization, as a quadratic optimization problem over real variables x1, . . . , xn, where
V = {1, . . . , n}:

3

max
∑

(i,j)∈E

1

4
(xi − xj)2

s.t.

x2i = 1 ∀i ∈ V

Any quadratic optimization problem has a natural relaxation to an SDP, in which we relax
real variables to take vector values and we change multiplication to inner product:

max
∑

(i,j)∈E

1

4
||xi − xj ||2

s.t.

||xi||2 = 1 ∀i ∈ V

Solving the above SDP, which is doable in polynomial time up to arbitrarily good accuracy,
gives us a unit vector xi for each vertex i. A simple way to convert this collection to a cut
(S, V − S) is to take a random hyperplane through the origin, and then define S to be the
set of vertices i such that xi is above the hyperplane. Equivalently, we pick a random vector
g according to a rotation-invariant distribution, for example a Gaussian distribution, and
let S be the set of vertices i such that 〈g,xi〉 ≥ 0.

Let (i, j) be an edge: One sees that if θ is the angle between xi and xj , then

P[(i, j) is cut] =
θ

π

and the contribution of (i, j) to the cost function is

1

4
||xi − xj ||2 =

1

2
− 1

2
〈xi,xj〉 =

1

2
− 1

2
cos θ

some calculus shows that for every 0 ≤ π ≤ π we have

θ

π
> .878 ·

(
1

2
− 1

2
cos θ

)
and so

E[number of edges cut by (S, V − S)] ≥ .878 ·
∑

(i,j)∈E

1

4
||xi − xj ||2

= .878 · SDP −MaxCut(G) ≥ .878 ·MaxCut(G)

so we have a polynomial time approximation algorithm with worst-case approximation
guarantee .878.

Next time, we will see how the SDP relaxation behaves on random graphs, but first let us
how it behaves on a large class of graphs.

4

3 Max Cut in Bounded-Degree Triangle-Free Graphs

Theorem 2 If G = (V,E) is a triangle-free graph in which every vertex has degree at most
d, then

MaxCut(G) ≥
(

1

2
+ Ω

(
1√
d

))
· |E|

Proof: Consider the following feasible solution for the SDP: we associate to each node i

an n-dimensional vector x(i) such that x
(i)
i = 1√

2
, x

(i)
j = −1/

√
2deg(i) is (i, j) ∈ E, and

x
(i)
j = 0 otherwise. We immediately see that ||x(i)||2 = 1 for every i and so the solution is

feasible.

Let us transform this SDP solution into a cut S, V − S) using a random hyperplane.

We see that, for every edge (i, j) we have

〈x(i),x(j)〉 = − 1√
2d(i)

− 1√
2d(ij

≤ − 1√
d

The probability that (i, j) is cut by (S, V − S) is

arccos
(
1
2 −

1
2
√
d

)
π

and
arccos

(
1
2 −

1
2
√
d

)
π

=
1

2
+

arcsin
(

1
2
√
d

)
π

≥ 1

2
+ Ω

(
1√
d

)
so that the expected number of cut edges is at least

(
1
2 + Ω

(
1√
d

))
· |E|. �

5

	Semidefinite Programming
	SDP Relaxation of Max Cut and Random Hyperplane Rounding
	Max Cut in Bounded-Degree Triangle-Free Graphs

