U.C. Berkeley — CS294: Beyond Worst-Case Analysis Handout 4s
Luca Trevisan September 5, 2017

Summary of Lecture 4

In which we introduce semidefinite programming and apply it to Max Cut.

1 Semidefinite Programming

Recall that a matrix M € R™"™ is positive semidefinite (abbreviated PSD and written
M = 0) if it is symmetric and all its eigenvalues are non-negative. We will use without
proof the following facts from linear algebra:

1. If M € R™™™ is a symmetric matrix, then all the eigenvalues of M are real, and, if we
call A\ < Ao < --- < A, the eigenvalues of M with repetition, we have

M = Z Av @ (v)T

where the v(?) are orthonormal eigenvectors of the \;.
2. The smallest eigenvalue of M has the characterization

y My

min
y#0 ||yl[?

A=

and the optimization problem in the right-hand side is solvable up to arbitrarily good
accuracy

From part (2) above we have that M is PSD if and only if for every vector y we have
y My > 0.

We will also use the following alternative characterization of PSD matrices

Lemma 1 A matrix M € R™ ™ is PSD if and only if there is a collection of vectors
xW . x™ such that, for every i, j, we have M;; = (x, x0)y,

PROOF: Suppose that M and x(), ... x(are such that M;; = (x@ %0y for all i and j.
Then M is PSD because for every vector y we have

2
>0

Z yz‘X(i)

)

y My =) wiyiMij =) yiy;(x,x7) = ‘
i i

Conversely, if M is PSD and we write it as

M = Z)\ZV(k) (V(k))T
k

we have

k) (k
Mi,j = Z)\kvl()’Uj()
k
and we see that we can define n vectors x(1), .., x(™ by setting

xi = v/ o

and we do have the property that

O

With these characterizations in mind, we define a semidefinite program as an optimization
program in which we have n? real variables X, with 1 <4, 5 < n, and we want to maximize,
or minimize, a linear function of the variables such that linear constraints over the variables
are satisifed (so far this is the same as a linear program) and subject to the additional
constraint that the matrix X is PSD. Thus, a typical semidefinite program (SDP) looks like

max E Ci’inJ‘
Z’?j
s.t

ZASJ-)X@]‘ <b
i,J

DAL X < b
1]
X>0

where the matrices C, AV, ..., A and the scalars b1, . .., by, are given, and the entries of
X are the variables that we are optimizing over.

If A and B are two matrices such that A > 0 and B > 0, and if a > 0 is a scalar, then
it is easy to see that a- A > 0 and A + B > 0, by using the characterization that M = 0
iff yT My > 0 for every y. This means that the set of PSD matrices is a convex subset of
R™ " and that the above optimization problem is a convex problem.

Using the ellipsoid algorithm, one can solve in polynomial time (up to arbitrarily good
accuracy) any optimization problem in which one wants to optimize a linear function over
a convex feasible region, provided that one has a separation oracle for the feasible region,
that is, an algorithm that, given a point, checks whether it is feasible and, if not, constructs
an inequality that is satisfied by all feasible point but not satisfied by the given point. In
order to construct a separation oracle for a SDP, it is enough to solve the following problem:
given a matrix M, decide if it is PSD or not and, if not, construct an inequality that is
satisfied by the entries of all PSD matrices but that is not satisfied by M. In order to do
so, recall that the smallest eigenvalue of M is

LY My y' My
|y l[?

and that the above minimization problem is solvable in polynomial time (up to arbitrarily
good accuracy). If the above optimization problem has a non-negative optimum, then M
is PSD. If it is a negative optimum y*, then the matrix is not PSD, and the inequality

ZX Jyz y]

is satisfied for all PSD matrices X but fails for X := M. Thus we have a separation oracle
and we can solve SDPs in polynomial time up to arbitrarily good accuracy.

m

In light of our characterization of PSD matrices, SDPs have the following equivalent for-
mulation:

max Z Ci;(x x9)y
(V]
s.t.

340 0, x0y < b,

/L'7j

where our variables are vectors x(1), .- x("),

2 SDP Relaxation of Max Cut and Random Hyperplane
Rounding

The Max Cut problem in a given graph G = (V, E) has the following equivalent char-
acterization, as a quadratic optimization problem over real variables xi,...,x,, where

V={1,...,n}:

Any quadratic optimization problem has a natural relaxation to an SDP, in which we relax
real variables to take vector values and we change multiplication to inner product:

1
max Z 1||xi—xj\|2
(i.4)eE

s.t.
]|xi\|2 =1 WieV

Solving the above SDP, which is doable in polynomial time up to arbitrarily good accuracy,
gives us a unit vector x; for each vertex i. A simple way to convert this collection to a cut
(S,V — S) is to take a random hyperplane through the origin, and then define S to be the
set of vertices 7 such that x; is above the hyperplane. Equivalently, we pick a random vector
g according to a rotation-invariant distribution, for example a Gaussian distribution, and
let S be the set of vertices ¢ such that (g, x;) > 0.

Let (4,j) be an edge: One sees that if 6 is the angle between x; and x;, then
o 0
P[(i,j) is cut | = —

and the contribution of (i, 7) to the cost function is

and so
E[number of edges cut by (S,V — 5)] > .878 - Z %sz — x|
(i,9)€eE
= .878 - SDP — MaxzCut(G) > .878 - MaxCut(G)

so we have a polynomial time approximation algorithm with worst-case approximation
guarantee .878.

Next time, we will see how the SDP relaxation behaves on random graphs, but first let us
how it behaves on a large class of graphs.

3 Max Cut in Bounded-Degree Triangle-Free Graphs

Theorem 2 If G = (V, E) is a triangle-free graph in which every vertex has degree at most
d, then

MazCut(G) > <; +0 <\}g>) |E|

PrOOF: Consider the following feasible solution for the SDP: we associate to each node i
an n-dimensional vector x(*) such that xl@ = %, xg-z) = —1/4/2deg(i) is (i,5) € E, and
:):g-z) = 0 otherwise. We immediately see that ||x(||? = 1 for every i and so the solution is
feasible.

Let us transform this SDP solution into a cut S,V — S) using a random hyperplane.

We see that, for every edge (i,7) we have

o1 r 1
V2d(@) 2d(i T Vd

The probability that (i,7) is cut by (S,V —.5) is

X(j)> -

arccos (% — 2—\1/3)
T
and
arccos (% — 2—\1@) B 1 N arcsin <2%/E> N 14_ 0 L
T 2 s — 2 Vd

so that the expected number of cut edges is at least (% +Q <i>) -|E|. O

	Semidefinite Programming
	SDP Relaxation of Max Cut and Random Hyperplane Rounding
	Max Cut in Bounded-Degree Triangle-Free Graphs

