U.C. Berkeley — CS294: Beyond Worst-Case Analysis Handout 4
Luca Trevisan September 5, 2017

Scribed by Rachel Lawrence

Scribe Notes of Lecture 4

In which we introduce semidefinite programming and apply it to Max Cut.

1 Overview

We begin with an introduction to Semidefinite Programming (SDP). We will then see that,
using SDP, we can find a cut with the same kind of near-optimal performance for Max Cut
in random graphs as we got from the greedy algorithm — that is,

cut > ’g‘ + Q(n Vd)

in random graphs G,,, %. More generally, we will prove that you can always find a cut at
least this large in the case that G is triangle-free and with maximum vertex degree > d,
which will imply the bound in random graphs. We will also see how to use SDP to certify
an upper bound:

E
max cut < ’2| + O(n -Vd)
with high probability in G «

Methods using SDP will become particularly helpful in future lectures when we consider
planted-solution models instead of fully random graphs: greedy algorithms will fail on some
analogous problems where methods using SDP can succeed.

2 Semidefinite Programming

Semidefinite Programming (SDP) is a form of convex optimization, similar to linear pro-
gramming but with the addition of a constraint stating that, if the variables in the linear
program are considered as entries in a matrix, that matrix is positive semidefinite. To
formalize this, we begin by recalling some basic facts from linear algebra.

2.1 Linear algebra review

Definition 1 (Positive Semidefinite) A matrizc M € R™*" is positive semidefinite (ab-
breviated PSD and written M = 0) if it is symmetric and all its eigenvalues are non-
negative.

We will also make use of the following facts from linear algebra:

1. If M € R™" is a symmetric matrix, then all the eigenvalues of M are real, and, if we
call \; < Ao < --- < A\, the eigenvalues of M with repetition, we have

M = Z Av® (v)T

where the v(!) are orthonormal eigenvectors of the \;.

2. The smallest eigenvalue of M has the characterization

v o Y MY
1—m1n72
y#0 |lyll

and the optimization problem in the right-hand side is solvable up to arbitrarily good
accuracy

This gives us the following lemmas:
Lemma 2 M > 0 if and only if for every vector'y we have y' My > 0.

PROOF: From part (2) above, the smallest eigenvalue of M is given by

v = Y My
1 = min 5
y#0 |[[yll

Noting that we always have ||y||> > 0, then A\; > 0 if and only if the numerator y? My on
the right is always non-negative. [

Lemma 3 I[fA,B =0, then A+ B>0

PrOOF: Vy, y' (A + B)y = y' Ay + y' By > 0. By Lemma 2, this implies A + B = 0. O

Lemma 4 I[fA >0 and a > 0, then aA >0

PROOF: Vy, y'aAy = a(y” Ay) > 0. By Lemma 2, this implies aA >= 0. O

2.2 Formulation of SDP

With these characterizations in mind, we define a semidefinite program as an optimization
program in which we have n? real variables X j, with 1 <4, j < n, and we want to maximize,
or minimize, a linear function of the variables such that linear constraints over the variables
are satisfied (so far this is the same as a linear program) and subject to the additional
constraint that the matrix X is PSD. Thus, a typical semidefinite program (SDP) looks like

max E Ci,sz‘,j
,L‘ﬂj
8.t

Z Ag}j)Xi,j <h
,J

(m)
DA X < b
1,J
X>0
where the matrices C, A1), ..., A0 and the scalars by, ..., by, are given, and the entries of

X are the variables over which we are optimizing.

We will also use the following alternative characterization of PSD matrices

Lemma 5 A matrix M € R™ ™ is PSD if and only if there is a collection of vectors
xW L xM) such that, for every i,], we have M;; = (x, x0)y,

PROOF: Suppose that M and x(, ... x(are such that M;; = (x@ %0y for all i and j.
Then M is PSD because for every vector y we have

2
Yy My = "y My =Y yiy;(x, xU)) = ‘ >0
i

/Z:7j

Z yz’X(i)

Conversely, if M is PSD and we write it as

M = Z Aev) (v(k))T
k

we have

k) (k
Mi,j = Z)\kvz()’U§)
k
and we see that we can define n vectors x(1), - -. . x(") by setting

x,(f) =g vgk)

and we do have the property that
M;; = (x,x1)
O

This leads to the following equivalent formulation of the SDP optimization problem:
max Z Cij (x x0))
,J

s.t.
ZAz(,lj) (x®, x)y < b,
1,3

S A x0, X0 <,
2]

n)

where our variables are vectors x1), .. x(This is the statement of the optimization

problem that we will most commonly use.

2.3 Polynomial time solvability

From lemmas 3 and 4, we recall that if A and B are two matrices such that A > 0 and
B > 0, and if @ > 0 is a scalar, then a- A > 0 and A+ B > 0. This means that the set
of PSD matrices is a convex subset of R™*™ and that the above optimization problem is a
convex problem.

Using the ellipsoid algorithm, one can solve in polynomial time (up to arbitrarily good
accuracy) any optimization problem in which one wants to optimize a linear function over
a convex feasible region, provided that one has a separation oracle for the feasible region:
that is, an algorithm that, given a point,

1. Checks whether it is feasible and, if not,

2. Constructs an inequality that is satisfied by all feasible point but not satisfied by the
given point.

In order to construct a separation oracle for a SDP, it is enough to solve the following
problem: given a matrix M, decide if it is PSD or not and, if not, construct an inequality
> ; ijTij > 0 that is satisfied by the entries of all PSD matrices but that is not satisfied
by M. In order to do so, recall that the smallest eigenvalue of M is

.y My
m1n72
v lyll

and that the above minimization problem is solvable in polynomial time (up to arbitrarily
good accuracy). If the above optimization problem has a non-negative optimum, then M
is PSD. If it is a negative optimum y*, then the matrix is not PSD, and the inequality

ZX Jyz y]

is satisfied for all PSD matrices X but fails for X := M. Thus we have a separation oracle
and we can solve SDPs in polynomial time up to arbitrarily good accuracy.

3 SDP Relaxation of Max Cut and Random Hyperplane
Rounding

The Max Cut problem in a given graph G = (V, E) has the following equivalent char-
acterization, as a quadratic optimization problem over real variables xi,...,x,, where

V=A{1,...,n}:

max cut(G) = max Z i(xl —z;)?

We can interpret this as associating every vertex v with a value x, = %1, so that the cut
edges are those with one vertex of value +1 and one of value —1.

While quadratic optimization is NP-hard, we can instead use a relaxation to a polynomial-
time solvable problem. We note that any quadratic optimization problem has a natural
relaxation to an SDP, in which we relax real variables to take vector values and we change
multiplication to inner product:

maz cut(G) < max Z |xl x;?
) EE
s.t.

I|2=1 VieV

Solving the above SDP, which is doable in polynomial time up to arbitrarily good accuracy,
gives us a unit vector x; for each vertex i. A simple way to convert this collection to a cut
(S,V — 8) is to take a random hyperplane through the origin, and then define S to be the
set of vertices i such that x; is above the hyperplane. Equivalently, we pick a random vector
g according to a rotation-invariant distribution, for example a Gaussian distribution, and
let S be the set of vertices ¢ such that (g, x;) > 0.

Figure 1: The hyperplane through the origin defines a cut partitioning the vertices into sets
{z1, 22} and {z3,x4}.

Let (7,7) be an edge: One sees that if § is the angle between x; and x;, then the probability
(i,7) is cut is proportional to 6:

P[(i,7) is cut | = Y

T
and the contribution of (i, 7) to the cost function is
1 1 1 1 1
ZHXz —x]|° = 5 §<Xz,xj> 5~ 5005‘9

and so
E[number of edges cut by (S,V — S)] > .878- Z %Hx, —x;|?
(1,j)€EE
= .878 - SDPMaxCut(G) > .878 - MaxCut(G)

so we have a polynomial time approximation algorithm with worst-case approximation
guarantee .878.

Next time, we will see how the SDP relaxation behaves on random graphs, but first let us
how it behaves on a large class of graphs.

4 Max Cut in Bounded-Degree Triangle-Free Graphs

Theorem 6 If G = (V, E) is a triangle-free graph in which every vertex has degree at most

d, then
1 1
MazCut(G) > (- +Q(—=) |E
@)z (50 (7)) 1

PROOF: Consider the following feasible solution for the SDP: we associate to each node i
an n-dimensional vector x(*) such that a:z@ = 12, xg-z) = —1/+/2deg(i) if (i,j) € E, and
a:y) = 0 otherwise. We immediately see that ||x(||?
feasible.

=9

= 1 for every i and so the solution is

For example, if we have a graph such that vertex 1 is adjacent to vertices 3 and 5:

1 2 3 4 5

o) T 1 0 1
V2 2deg(1) \/2deg(1)

@ 0 L 0 0

(3) 1 vz 1

v 2deg(3) 0 V2 00

™. 0 0 0 0 0

Let us transform this SDP solution into a cut (S,V — S) using a random hyperplane.

We see that, for every edge (i,) we have

o 1 1
V20 \2dG) Y

The probability that (i,7) is cut by (S,V —.5) is

(x® x

Y

(J’)>

arccos (% — 2—\1/3)
T
and
arccos (% — 2—\1”) 1, arcsin <2%/g> N 1 L L
T 2 s — 2 Vd

so that the expected number of cut edges is at least (% +Q (1)) Bl O

	Overview
	Semidefinite Programming
	Linear algebra review
	Formulation of SDP
	Polynomial time solvability

	SDP Relaxation of Max Cut and Random Hyperplane Rounding
	Max Cut in Bounded-Degree Triangle-Free Graphs

